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Chapter 1

Introduction

Disassembly is the backbone of binary analysis, fulfilling the basic need to identify
code in binaries, and translate it into a form fit for human analysis or further process-
ing. Without it, we would have no way to efficiently analyze malicious programs,
leaving us without means to study the details of their inner workings and devise
defenses. Nor could we hope to statically rewrite legacy or proprietary binaries to
improve their security characteristics, or to scan for and fix vulnerabilities in bina-
ries. Binaries for which we have no source could never be analyzed or modified,
and would forever remain vulnerable to attacks discovered after the original time of
compilation. Clearly, effective and precise disassembly is a highly desirable tool for
any low-level systems security work.

1.1 Motivation and Problem Statement

Despite the fact that every Instruction Set Architecture (ISA) has a well-defined set
of instruction opcodes, parsing these opcodes and corresponding mnemonics from
the bytes in a binary is not a straightforward process. This is illustrated in Listing 1.1,
which shows some of the challenges involved in disassembly.

Listing 1.1 shows how a simple function from opensshd v7.1p2 is compiled
by gcc 5.1.1 from C to x86-64 code (x64 for short). Note that the function does
nothing special. It uses a for loop to iterate over an array, applying a switch
statement in each iteration to determine what to do with the current array element:
skip uninteresting elements, return the index of an element which meets the criteria,
or print an error and exit if something unexpected happens. Despite the simplicity
of the C code, the compiled x64 version of this function (shown on the right side of
the listing) is far from trivial to disassemble correctly.

One of the first things to notice is that the x64 implementation of the switch
statement is based on a jump table, a construct commonly emitted by modern com-
pilers. The jump table implementation avoids the need for a complicated tangle of
conditional jumps. Instead, the instruction at address 0x4438f9 uses the switch

1
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int

2 channel_find_open(void) {

u_int i;

4 Channel *c;

6 for(i = 0; i < n_channels; i++) {

c = channels[i];

8 if(!c || c->remote_id < 0)

continue;

10 switch(c->type) {

case SSH_CHANNEL_CLOSED:

12 case SSH_CHANNEL_DYNAMIC:

case SSH_CHANNEL_X11_LISTENER:

14 case SSH_CHANNEL_PORT_LISTENER:

case SSH_CHANNEL_RPORT_LISTENER:

16 case SSH_CHANNEL_MUX_LISTENER:

case SSH_CHANNEL_MUX_CLIENT:

18 case SSH_CHANNEL_OPENING:

case SSH_CHANNEL_CONNECTING:

20 case SSH_CHANNEL_ZOMBIE:

case SSH_CHANNEL_ABANDONED:

22 case SSH_CHANNEL_UNIX_LISTENER:

case SSH_CHANNEL_RUNIX_LISTENER:

24 continue;

case SSH_CHANNEL_LARVAL:

26 case SSH_CHANNEL_AUTH_SOCKET:

case SSH_CHANNEL_OPEN:

28 case SSH_CHANNEL_X11_OPEN:

return i;

30 case SSH_CHANNEL_INPUT_DRAINING:

case SSH_CHANNEL_OUTPUT_DRAINING:

32 if(!compat13)

fatal(/* ... */);

34 return i;

default:

36 fatal(/* ... */);

}

38 }

return -1;

40 }

<channel_find_open>:

4438ae: push rbp

4438af: mov rbp,rsp

4438b2: sub rsp,0x10

4438b6: mov DWORD PTR [rbp-0xc],0x0

4438bd: jmp 443945

4438c2: mov rax,[rip+0x2913a7]

4438c9: mov edx,[rbp-0xc]

4438cc: shl rdx,0x3

4438d0: add rax,rdx

4438d3: mov rax,[rax]

4438d6: mov [rbp-0x8],rax

4438da: cmp QWORD PTR [rbp-0x8],0x0

4438df: je 44393d

4438e1: mov rax,[rbp-0x8]

4438e5: mov eax,[rax+0x8]

4438e8: test eax,eax

4438ea: js 44393d

4438ec: mov rax,[rbp-0x8]

4438f0: mov eax,[rax]

4438f2: cmp eax,0x13

4438f5: ja 443926

4438f7: mov eax,eax

4438f9: mov rax,[rax*8+0x49e840]

443901: jmp rax

443903: mov eax,[rbp-0xc]

443906: leave

443907: ret

443908: mov eax,[rip+0x2913c6]

44390e: test eax,eax

443910: jne 443921

443912: mov edi,0x49e732

443917: mov eax,0x0

44391c: call [fatal]

443921: mov eax,[rbp-0xc]

443924: leave

443925: ret

443926: mov rax,[rbp-0x8]

44392a: mov eax,[rax]

44392c: mov esi,eax

44392e: mov edi,0x49e818

443933: mov eax,0x0

443938: call [fatal]

44393d: nop

44393e: jmp 443941

443940: nop

443941: add DWORD PTR [rbp-0xc],0x1

443945: mov eax,[rip+0x29132d]

44394b: cmp [rbp-0xc],eax

44394e: jb 4438c2

443954: mov eax,0xffffffff

443959: leave

44395a: ret

Listing 1.1: Example of disassembled switch statement (from opensshd v7.1p2 compiled with

gcc 5.1.1 for x64, source edited for brevity). Interesting lines are shaded.

input value to compute (in rax) an index into a table, which stores at that index the
address of the appropriate case block. This way, we only require a single indirect
jump (at address 0x443901 in the listing) to transfer control to any case address
the jump table defines.

While efficient, jump tables make disassembly more difficult because they use in-

direct control flow. The lack of an explicit target address in an indirect jump makes
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a result, any instructions targeted by an indirect jump remain undiscovered unless
specific (compiler-dependent) heuristics are implemented in the disassembler to dis-
cover and parse jump tables. For our example, this means that the instructions at
addresses 0x443903–0x443925 are not discovered without such heuristics. (As
discussed in Chapter 2.4, alternative disassembly methods which are control-flow
independent come with their own set of drawbacks.)

Matters are complicated even more because there are multiple ret instructions
in the switch, as well as calls to the fatal function, which throws an error and
never returns. In general, it is not safe to assume that there are instructions following
a ret instruction or non-returning call; instead, these may be followed by data or
padding bytes not intended to be parsed as code. However, the converse assumption,
that these instructions are not followed by more code, may lead the disassembler to
miss instructions, leading to an incomplete disassembly.

This example has demonstrated some of the challenges involved in disassembly.
As we discuss in Chapter 2.7, many more challenges exist. This is especially true
if, as we do in this thesis, we consider not only the problem of disassembling raw
instructions, but also related problems such as function detection, which enable more
powerful binary analysis applications based on raw disassembly. In the remainder
of this thesis, we use the term “disassembly” in the broadest sense, including these
related problems, as described in more detail in Chapter 2.

Disassembly is the basis of virtually all areas of binary analysis. A prominent
example is malware analysis, where disassembly is used to study the behavior of ma-
licious software such as botnets, in order to devise mitigation methods. Moreover,
disassembly is crucial for binary-level anti-exploitation and vulnerability analysis
systems [54; 140]. For instance, recent years have seen a vast amount of research
on binary-level Control-Flow Integrity methods, which rely on disassembly to de-
termine legal control flows for binaries, and to statically instrument binaries with
enhanced security features [23; 144; 197]. Such binary-level systems are crucial for
securing untrusted or proprietary binaries for which source is not available. Disas-
sembly also finds a myriad of applications outside of security research; for instance,
in binary reoptimization systems [108; 123; 179].

Summarizing, we have established that disassembly is both challenging, and an
important tool in low-level systems security. This leads us to ask: How can we
minimize the inaccuracies and challenges involved in disassembly, so that we can
safely use it to build secure systems? This is the overarching subject of this thesis.

1.2 Research Questions

The problem of how to apply potentially inaccurate disassembly to safely build se-
cure systems is the theme of Part I. Phrasing the issue more specifically gives rise to
our first research question:
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Question (1): Given all the potential disassembly inaccuracies, how can we effec-

tively and safely apply binary analysis to build systems for analyzing and securing

legacy and proprietary binaries?

We study solutions to this question by building several practical systems for se-
curing binaries, based on disassembly and binary rewriting. In these systems (listed
in Section 1.3), we investigate multiple techniques for maximizing security and re-
liability guarantees while tolerating potential inaccuracies in the disassembly and
binary rewriting process.

During the course of investigating Question (1), we developed a rigid understand-
ing of the sort of output and precision we require from disassembly to achieve our
goals. However, during the publication process of our papers, we also frequently
encountered reviewers who were uncertain about what exactly is and is not feasible
with binary analysis, and what problems one should expect with a given approach.
This frequently led to questions such as: “Can you guarantee that all functions will
be instrumented?”, or: “How likely is it that your approach might break protected
binaries, or cause them to crash?”.

Given the error-prone nature of binary analysis, these questions are justified. One
should naturally take precautions to ensure maximum accuracy and graceful failure
in the event of inaccuracies. However, we also found a distinct lack of agreement in
the research community about just how reliable disassembly is, and which precau-
tions are needed in a particular situation. This lack of agreement frequently leads to
disagreements among both reviewers and researchers about the merits of a given bi-
nary analysis-based system. This led us to pursue our next research questions, which
we explore in Part II of this thesis:

Question (2): How precise is disassembly (in the broadest sense) in practice, and

how frequently should we expect inaccuracies of each possible kind?

Question (3): To what extent is there a consensus on disassembly precision in the

binary analysis community, and where is that consensus mismatched with our find-

ings from Question (2)?

Our work shows that, in many situations, disassembly performs better than is
commonly assumed in the literature (see Chapter 6). However, another major con-
clusion from our work on Questions (2) and (3) is that function detection is highly
problematic as a disassembly primitive (more so than any other primitive), frequently
yielding false positive and false negative rates in excess of 20%. Our final research
question, also addressed in Part II, is therefore:

Question (4): How can we achieve more precise function detection results?

In our pursuit of this research question, we develop a novel function detection
method which provides more accurate results than existing systems, while making
fewer assumptions on the properties of the analyzed binary.



1.3. CONTRIBUTIONS AND OUTLINE 5

C
h
a
p
te

r
1

1.3 Contributions and Outline

The remainder of this thesis begins by providing the necessary background in Chap-
ter 2. Subsequently, we discuss our contributions in the following two topics.

(1) Binary protection solutions for stripped legacy and proprietary binaries (Part I
of this thesis).

• We develop StackArmor, a comprehensive system to protect binaries against
stack-based memory error vulnerabilities, including both inter- and intra-
frame defenses. We describe StackArmor in Chapter 3.

• In Chapter 4, we introduce PathArmor, the first practical context-sensitive
Control-Flow Integrity implementation. PathArmor is open-source, and
provides strong protection for binaries against a range of control-flow hi-
jacking attacks.

• We implement Parallax, a novel stand-alone tamperproofing system for
binaries. Parallax is the first system which can protect arbitrary code while
withstanding instruction cache modification attacks that affect prior work.
It is discussed in Chapter 5.

(2) Quantitative measurements and improvements of disassembly precision (Part II
of this thesis).

• We perform a large-scale study of disassembly on real-world x86 and x64
binaries. This study aims to fill the void in the binary analysis community
caused by a lack of consensus on the true precision and problems in dis-
assembly. We measure all relevant aspects of disassembly, and publicly
release our results and ground truth to facilitate future studies. Moreover,
we compare our findings to three years worth of binary analysis work pub-
lished in top venues, and pinpoint where the expectations of this research
are mismatched with our findings. We discuss our results in Chapter 6.

• Given that function detection is currently the most inaccurate disassem-
bly primitive, we develop a novel function detection system called Nu-

cleus. Nucleus takes a Control-Flow Graph-centric approach, which is
both compiler-agnostic, and more accurate than existing signature-based
work. Nucleus is open-source, and is discussed in Chapter 7.

We begin each part with a brief outline of what will be discussed, and conclude
each part with a discussion of lessons learned. Chapter 8 concludes this thesis, reca-
pitulating our main results and discussing perspectives for future work.
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Chapter 2

Background

Disassembly is a broad subject, which encompasses more than just raw instruction
recovery. Moreover, the difficulty and accuracy of disassembly depends on multi-
ple factors, such as the availability of symbols and the presence of complex binary-
level constructs. This chapter provides the necessary background to understand the
tradeoffs involved, and provides our definitions of disassembly and other terms used
throughout this thesis.

2.1 Binary Analysis Primitives

This thesis considers disassembly in its broadest sense: in addition to finding and
parsing instructions, we also want to recover and analyze more complex primitives
useful for binary analysis. This section defines and describes the primitives that we
are interested in throughout this thesis.

Instruction The basic mnemonic representation of a machine-level instruction, as
shown on the right side of Listing 1.1.

Basic Block (BB) A sequence of instructions, where the first instruction is the only
entry point (the only instruction targeted by any jump in the binary), and the last
instruction is the only exit point (the only instruction in the sequence which may
jump to another basic block) [16]. Some disassemblers consider call instructions
to be exit points, while others do not. Except where otherwise noted, we do not
consider calls to be exit points in this thesis.

Function A set of basic blocks, such that together these implement the function-
ality defined in a corresponding source-level function (as in Listing 1.1), possibly
merged with a set of basic blocks from inlined functions. Instead of recovering all
basic blocks associated with a function, disassemblers may report only the first ad-
dress (function start detection), or report both the first and last addresses (function

boundary detection). These terms are defined more rigorously in Chapter 7.

7
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Function signature The list of parameters and return type for a particular function.

Control Flow Graph (CFG) A digraph Gcfg = (Vbb, Ecf ), which describes how
control flow edges Ecf ⊆ Vbb × Vbb connect the basic blocks Vbb in a function [16].
In practice, disassemblers often omit indirect edges, or define a global CFG rather
than per-function CFGs. Therefore, we also define the Interprocedural CFG (ICFG),
allowing us to abstract from disassemblers’ varying CFG definitions.

Interprocedural CFG (ICFG) The union of all function CFGs, connected through
interprocedural call and jump edges. We will sometimes define the ICFG to include
indirect edges, other times these will be excluded. This will be made clear on a
per-scenario basis (usually in each chapter where the term is relevant).

Callgraph A digraph G = (Vcs ∪ Vf , Ecall) linking the set Vcs of call sites to the
function starts Vf through may-call edges Ecall ⊆ Vcs × Vf [16]. Similarly to the
CFG, disassemblers deviate from the traditional callgraph definition by including
only direct call edges. Therefore, we use the term “callgraph” to denote only the
direct callgraph, except where noted otherwise.

2.2 The x86/x64 Instruction Set Architecture

Our work in this thesis focuses on the x86 instruction set, and its 64-bit version
called x86-64 (or x64). Except where stated otherwise, this thesis assumes stripped
compiler-generated x86/x64 binaries based on C/C++ source.

The x86/x64 ISA is interesting because it is incredibly common in both the con-
sumer market (especially in desktop computers) and in binary analysis research (in
part due to its popularity in end-user machines). This alone makes x86/x64 an obvi-
ous platform for our research. However, several other properties of the ISA make it
even more suitable for study, in large part because of its complexity and the special
challenges it poses to disassemblers.

The x86 ISA is a Complex Instruction Set Computing (CISC) architecture with
a long history of backwards compatibility (dating back to 1978), leading to a very
dense instruction set, in the sense that the vast majority of possible byte values rep-
resent a valid opcode [100; 142]. This exacerbates the code versus data problem,
making it less obvious to disassemblers that they have mistakenly interpreted data
as code. Moreover, the instruction set is variable-length, and allows unaligned mem-
ory accesses for all valid word sizes. Thus, x86/x64 allows unique complex binary
constructs, such as (partially) overlapping and misaligned instructions.

2.3 Static versus Dynamic Analysis

Broadly speaking, binary analysis can be divided into two main philosophies: static
analysis, and dynamic analysis. This thesis focuses mostly on static analysis (using
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dynamic analysis only when the disadvantages described below can be mitigated).
Both static and dynamic analysis come with their own unique tradeoffs.

Static disassembly takes a binary as input, and attempts to discover and parse all
code within that binary without running it. There also exists the contrasting notion
of dynamic disassembly. Dynamic disassembly does run a binary, and discovers
instructions by tracing them as they are executed.

Dynamic disassembly has multiple advantages. For instance, consider the prob-
lem of resolving indirect control flow, as illustrated earlier in Listing 1.1. When
tracing a program dynamically, the target of any indirect jump is immediately clear,
because we can observe which instruction is executed next. For much the same
reason, we never have to worry about accidentally interpreting data as code.

However, these advantages come with a price: we only see instructions that are
actually executed, so that each dynamic disassembly run reveals only part of the
code in a binary. Finding the rest of the code (and indeed, even knowing when we
have seen all of it) is an extremely challenging problem, known as the code coverage

problem [127]. Solutions to this problem attempt to drive execution towards unex-
plored paths, but ensuring that all paths are covered in a reasonable amount of time
is still an unsolved problem [57].

Another disadvantage of dynamic analysis is that the runtime monitoring in-
volved often imposes a large performance overhead on the analyzed program. In
some scenarios, this may be unacceptable; for instance, if the aim is to instrument a
binary with additional security guarantees in a production setting, we want to mini-
mize overhead. Moreover, the need for an external analysis framework makes distri-
bution of instrumented binaries less practical.

Avoiding the code coverage problem and minimizing overhead are important
benefits of static analysis. Static methods promise highly complete analysis, and
enable comprehensive, stand-alone, low-overhead instrumentation. Since the appli-
cations are so appealing, it is worth the effort to study how we can improve the
guarantees of static analysis, or use it effectively despite potential inaccuracies.

2.4 Disassembly Methods

There are two main approaches to static disassembly: linear and recursive disassem-
bly. These are illustrated in Figure 2.1.

Conceptually, linear disassembly is the simplest approach. It iterates through
all code segments in a binary, decoding all bytes consecutively and parsing them
into a list of instructions. The risk of this approach is that not all bytes may be in-
structions. Some compilers, such as Visual Studio, intersperse data such as jump
tables with the code (see also Chapter 6). When parsing this data as code, a disas-
sembler may encounter invalid opcodes. Worse: the data bytes may coincidentally
correspond to valid opcodes, leading the disassembler to output bogus instructions
(quite likely on dense ISAs such as x86/x64). On ISAs with variable-length op-
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<BB
0
>

    cmp ecx, edx

    jl <BB
2
>

    jmp <BB
1
>

<BB
1
>

    mov eax,[fptr+ecx]

    call eax

<BB
2
>

    mov eax,[fptr+edx]

    call eax

<f
1
>

  

<f
2
>

  

<f
0
>

  

<inline data>

<BB
0
>

    cmp ecx, edx

    jl <BB
2
>

    jmp <BB
1
>

<BB
1
>

    mov eax,[fptr+ecx]

    call eax

<BB
2
>

    mov eax,[fptr+edx]

    call eax

<f
1
>

  

<f
2
>

  

<f
0
>

  

<inline data>

RecursiveLinear

Figure 2.1: Disassembly methods. Arrows show disassembly flow. Gray blocks show missed or

corrupted code.

codes, such as x86/x64, the disassembler may even become desynchronized with
respect to the true instruction stream. Though the disassembler will eventually self-
resynchronize [118], desynchronization can cause the first few real instructions fol-
lowing the data to be missed [118; 161].

Recursive disassembly avoids these problems by being control-flow sensitive. It
starts from known entry points into the binary (such as the main entry point, and
exported function symbols), and recursively follows control flow from there to dis-
cover code. This allows recursive disassembly to work around data bytes in all but a
handful of corner cases.1 As we have seen in Listing 1.1, the downside of this is that
basic blocks (or even entire functions, such as f1 and f2 in Figure 2.1) targeted by
indirect jumps or calls are likely to be missed, unless special (compiler-specific, and
error-prone) heuristics are used to find them. Recursive disassembly is the de facto

standard used in well-known disassemblers like IDA Pro [83] and Dyninst [31].

2.5 Binary Instrumentation

Sometimes, we not only want to analyze a binary, but also modify it. This situation
is common in binary security research. For instance, we may want to extend a binary
with additional checks upon each (indirect) call and ret, verifying that the desti-
nation of the control transfer has not been tampered with. Modifying a binary in this
kind of way is called binary instrumentation. We make heavy use of it in Part I of
this thesis, to implement novel binary security techniques.

1To maximize code coverage, recursive disassemblers typically assume that the bytes directly after
a call instruction must also be disassembled, since they are the most likely target of an eventual ret.
Additionally, disassemblers assume that both edges of a conditional jump target valid instructions. Both of
these assumptions may be violated in rare cases, such as in deliberately obfuscated binaries.
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Like binary analysis in general, binary instrumentation can follow either a static
or dynamic approach, with much the same tradeoffs as discussed in Section 2.3. Dy-
namic instrumentation has the added advantage that it can easily inject or modify
instructions as they are executed (typically in a dedicated code cache). However, the
overhead involved is relatively high (slowdowns of 4× or more are not uncommon,
even for highly optimized platforms [121]), and distribution of instrumented binaries
is not as straightforward as with static instrumentation. Well-known dynamic instru-
mentation platforms include Pin [101; 121], Dyninst [31] and DynamoRIO [41].

Static binary instrumentation, as the name implies, disassembles and then modi-
fies a binary in-place, producing a new stand-alone binary that incorporates all mod-
ifications. Although this provides the benefits of low overhead and stand-alone bina-
ries, static instrumentation is more error-prone than its dynamic counterpart.

It is typically not possible to alter code in-place, as this causes code to shift
around, invalidating offsets and pointers used by calls and jumps throughout the bi-
nary. Without extensive symbolic information (see Section 2.6), it is infeasible to
find and fix all affected pointers. Since we cannot rely on the availability of such
information, a common alternative is to duplicate the code section, and insert tram-

polines at the start of each function in the original copy [178]. Function calls target
the original copy, which (through the trampoline) immediately jumps to the modified
version, in the duplicated code section. This allows us to modify the duplicated code
without invalidating code pointers, as these point only to the original code. While
this approach increases binary size, it induces relatively low overheads (achieving
slowdowns in the order of 10%–20% for our purposes).

Clearly, any errors in the disassembly used by a static instrumentation framework
lead to undefined results unless care is taken to ensure graceful failure. Part I of this
thesis pursues the question of how to build reliable binary protection systems which
tolerate a degree of disassembly/instrumentation errors. The static instrumentation
platforms we use are PEBIL [114] and Dyninst [31] (which supports static as well
as dynamic instrumentation).

2.6 Symbols, DWARF, PDB and Stripped Binaries

High-level source code (such as C code) is centered around functions and variables
with meaningful, human readable names. When compiling a program, compilers
emit symbols which keep track of such symbolic names, and describe how they are
mapped into the binary. For instance, function symbols provide a mapping from
symbolic, high-level function names to the first address and the size of each function.
This information is normally used by the linker when combining object files, and
also aids debugging.

Symbolic information can be emitted as part of the binary, or in the form of
a separate symbol file, and it comes in various flavors. Basic symbols are needed
by the linker, but far more extensive information can be emitted for debugging pur-
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poses. Debugging symbols go as far as providing a full mapping between source
lines and binary-level instructions, describing function parameters, stack frame in-
formation, and more. For ELF binaries, debugging symbols are typically generated
in the DWARF format [82], while PE binaries usually use the proprietary Microsoft
PDB format.

Clearly, symbolic information is extremely useful for binary analysis. To name
just one example, having a set of well-defined function symbols at our disposal elim-
inates the challenging function detection problem, even if only basic linker symbols
are available. Unfortunately, extensive debugging information is typically not in-
cluded in production-ready binaries, and even basic symbolic information is often
stripped to reduce file sizes and prevent reverse engineering (especially in the case of
malware or proprietary software). This means that disassemblers, and by extension
any work that relies on disassembly of arbitrary binaries, must be able to deal with
the far more challenging scenario of stripped binaries without any form of symbolic
information. Throughout this thesis, we therefore assume as little symbolic informa-
tion as feasible, and we focus on stripped binaries except where noted otherwise.

2.7 Complex Constructs: Challenges for Static Analysis

In Listing 1.1, we have already introduced several challenging cases for static disas-
sembly. We have also mentioned the existence of many more complex cases which
binary analysis may encounter. This section introduces a set of complex corner
cases which are often cited as being particularly harmful to the accuracy of disassem-
bly [31; 125; 161]. These are relevant throughout this thesis. Chapter 6 in particular
studies the prevalence of these constructs in real-world binaries, and quantifies their
impact on disassembly precision.

Overlapping/shared basic blocks Basic blocks may be shared between functions,
hindering disassemblers in distinguishing these functions from each other.

Overlapping instructions Since x86/x64 uses variable-length instructions without
any enforced memory alignment, jumps can target any offset within a multi-byte in-
struction. This allows the same code bytes to be interpreted as multiple overlapping
instructions, some of which may be missed by disassemblers.

Padding code and inline data Especially at high optimization levels, modern com-
pilers add padding code (often nop instructions or NULL bytes) between functions,
and even between basic blocks within a function. This code is not intended to be
executed, but to align functions and basic blocks in memory so they can be accessed
with optimal efficiency. In addition, compilers like Visual Studio intersperse data,
such as switch jump tables, with code. If a disassembler mistakenly interprets data
as code, this will lead to false positive instructions, and could lead to false negatives
if the instruction parser becomes desynchronized from the real instruction stream.
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Unreachable/indirectly reached code Recursive disassemblers like IDA Pro and
Dyninst follow control flow to discover code. While this approach works well for
separating code from data, it cannot discover functions or basic blocks that are never
called, or which are only called or jumped to indirectly. As we have seen in List-
ing 1.1, switches are also a common source of indirect control flow.

Non-contiguous functions Many disassemblers assume that each function is laid
out in a single contiguous memory range [69; 83]. This assumption is convenient for
signature-based function detection, which works by scanning for a function prologue
and epilogue. Depending on the compiler and optimization level, functions may
instead consist of multiple disjoint memory ranges, which require deeper analysis to
be associated with the correct function.

Multi-entry functions Instead of a single entry point, a function may have multiple
alternative entry points. For instance, glibc defines the splice function, which
has an alternative entry called __splice_nocancel that may be called depend-
ing on whether thread safety is required. Function detectors which do not consider
this may misclassify each alternative entry block as a separate function.

Tail calls In this common optimization, a function ends not with a return, but with a
jump to another function. This makes it more difficult to detect where the optimized
function ends.

Alternative prologues/epilogues Disassemblers often scan for well-known signa-
tures of function prologues and epilogues to detect functions. At high optimization
levels, these recognizable code sequences are often missing, causing misidentifica-
tion of the affected functions.

Obfuscated code In addition to complex constructs “naturally” emitted by com-
pilers, binaries may also contain deliberately obfuscated code. There exist a myriad
of obfuscation techniques, ranging from methods to confuse disassemblers by break-
ing assumptions (such as where calls will return), to more invasive approaches like
self-modifying code. An excellent overview of obfuscation is given by Collberg and
Nagra [60]. Obfuscated code occurs mostly in malware, though it has also been
used in proprietary software to resist reverse engineering (Skype being a famous ex-
ample [34]). Because our focus is on securing binaries which do not actively resist
our efforts, most research in this thesis is not concerned with obfuscated code.
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We now focus our attention on exploring methods for adding security to binaries,
based on static analysis and binary rewriting. We emphasize two important proper-
ties in each of the discussed systems.

P(1): Maximum performance and reliability, even with imperfect disassembly prim-

itives underlying the analysis. For instance, it is acceptable for an imprecise analysis
to cause a graceful reduction of security guarantees, but it should never lead to a bro-
ken or crashing binary.

P(2): A minimal need for symbolic or source-level information. In cases where a
particular binary analysis is highly unreliable, we sometimes apply a policy-driven

approach to symbolic information: We design our systems such that they function
normally in binary-only mode (and can thus be used for legacy or proprietary bina-
ries), but can take advantage of any available symbols to improve precision.

We implement these properties in three binary protection systems, thereby study-
ing how to effectively apply these properties in practice.

(1) Chapter 3 discusses StackArmor, a high-performance comprehensive stack pro-
tection approach for binaries.

(2) In Chapter 4, we introduce PathArmor. PathArmor is a Control-Flow Integrity
(CFI) system, which implements defenses against control-flow hijacking that are
agnostic of the underlying exploit, on both the backward and forward edge.

(3) Finally, in Chapter 5, we discuss Parallax, a stand-alone tamperproofing system
for binaries that resists tampering attempts by a hostile user on the same system.

At the end of this part of the thesis, we provide an overview of the various binary
analysis strategies explored in our systems, and discuss how they satisfy P(1) and
P(2). We also discuss the tradeoffs and applicability of each approach for use in
future binary analysis-based work. Part II of this thesis ties into this part by quan-
tifying and improving the precision of the disassembly primitives we rely on. This
improves (our understanding of) the precision (and thus security) guarantees we can
expect from analyses based on each primitive.

17
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Chapter 3

StackArmor: Comprehensive

Protection from Stack-Based

Memory Error Vulnerabilities

for Binaries

StackArmor is a comprehensive protection technique for stack-based memory er-
ror vulnerabilities in binaries. It relies on binary analysis and rewriting strategies
to drastically reduce the uniquely high spatial and temporal memory predictability
of traditional call stack organizations. Unlike prior solutions, StackArmor can pro-
tect against arbitrary stack-based attacks, requires no access to the source code, and
offers a policy-driven protection strategy that allows end users to tune the security-
performance tradeoff according to their needs. We present an implementation of
StackArmor for x86-64 Linux and provide a detailed experimental analysis of our
prototype on popular server programs and standard benchmarks (SPEC CPU2006).
Our results demonstrate that StackArmor offers better security than prior binary- and
source-level approaches, at the cost of only modest performance and memory over-
head even with full protection.

3.1 Introduction

While common defenses like W⊕X, canaries, and traditional ASLR prevent naive
return address overflows and code injection attacks, they have done little to elim-
inate stack-based attacks altogether. Mainly, the complexity of the attacks has in-
creased as attackers resort to advanced techniques like Return-Oriented Program-
ming (ROP) [163]. Likewise, they exploit the stack’s predictable layout to disclose
useful information, stored in current, previous, or reused stack frames [53]. We
conclude that, despite all efforts, the stack remains a hugely attractive target for at-
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tackers, mainly because it is an exploit-friendly contiguous mapping with spatial and
temporal allocation locality that is entirely predictable—obviating even the need for
“feng shui” strategies used on the heap [173].

In this chapter, we address the problem at its root by completely abandoning the
idea of a linearly growing stack. We statically rewrite binaries to isolate and fully
randomize the locations of stack frames and individual stack buffers, countering both
spatial attacks like overflows and temporal attacks like stack-based use-after-frees.

While we provide more comprehensive protection than prior solutions, better
stack defenses have been proposed before. Existing approaches include compiler ex-
tensions [18; 19], shadow stacks [33; 58; 61; 85; 145; 152; 166; 194], Control-Flow
Integrity (CFI) [15; 67; 197], and binary rewriting to add buffer protection [169],
but they either rely on source code and leave binaries at the mercy of attackers, or
offer only very limited protection. Specifically, there is currently no stack protection
technique for binaries that mitigates all of the following attack vectors: (1) buffer
overwrites and overreads within a stack frame, (2) buffer overwrites and overreads
across stack frames, (3) stack-based use-after-frees, (4) uninitialized reads (in reused
stack frames). As a result, stack attacks are still rampant. Attackers use them both
to divert control flow (e.g., in ROP attacks) and for memory disclosures [53].

Information leakage and buffer overflow attacks, in particular, are greatly helped
by the predictability of the stack layout. Although the start is typically randomized,
the stack itself grows in an entirely predictable fashion, making the disclosure of ca-
naries, return addresses, or data pointers of previous stack frames as simple as leak-
ing uninitialized data or exploiting buffer overreads. The same applies to exploits
modifying data in another stack frame. For example, randomization between stack
frames would have stopped recent high-profile attacks on Asterisk [72], Xen [73],
Kerberos [70], and MS Office [71].

Our binary-level approach makes StackArmor ideally suited for many practical
scenarios: the adoption of advanced security measures in popular compilers is slow.
Compiler maintainers are conservative and tend to reject options that incur signifi-
cant overhead. The -fstack-protector-strong option in gcc is a case in
point: it was tailored to a very narrow threat model for performance reasons. As
most vendors simply use common compilers like gcc, any measure not added to it
for performance reasons will not make it into production binaries. Without binary-
level defenses, users cannot decide to sacrifice some performance for better security.

Contributions We introduce StackArmor, a novel stack protection technique that
shields binaries from all of the above attacks. To provide comprehensive protec-
tion, StackArmor relies on static analysis enabled by state-of-the-art binary analy-
sis tools—which provide the necessary program abstractions, such as functions and
their control-flow graphs. Our static analysis is also supported by information on
the location and size of stack objects, for example provided by debug symbols (sim-
ilar to prior binary-level protection techniques [85]) or dynamic reverse engineering
techniques [116; 168]. StackArmor can also operate in complete absence of these, by
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gracefully reducing its (intra-frame) protection guarantees. Using binary rewriting
to instrument call and return instructions, StackArmor provides tailored protection
based on application-specific performance and security requirements. In full pro-
tection mode, StackArmor relies on a combination of randomization, isolation, and
secure allocation techniques to create the illusion that all the stack frames and the
individual stack buffers are drawn from a fully randomized space with no spatial
or temporal predictability guarantees. Unlike all the existing solutions, this strategy
can comprehensively protect against arbitrary stack-based attacks.

To summarize, our contributions are as follows.

• We present StackArmor, a novel stack protection technique which combines
inter- and intra-frame defenses to stop arbitrary spatial and temporal attacks.

• We present an implementation of StackArmor for x86-64 Linux. Ours is the
first system that provides such comprehensive stack protection for binaries.

• We provide a detailed experimental evaluation of our prototype, and show that
it achieves a modest performance and physical memory overhead of 5% and
+3MB, respectively, on average, on single-threaded server programs, while
scaling well even to heavily threaded server programs (28% and +112MB with
100 worker threads, on average) with full protection.

3.2 Threat Model

StackArmor prevents memory error attacks exploiting spatial and temporal locality
of reference on the stack. This section briefly elaborates on both classes of attacks
and discusses the limitations of existing stack protection techniques.

3.2.1 Spatial Attacks

Spatial attacks exploit memory errors to access data outside the prescribed buffer
bounds. Well-known memory error examples include stack-based buffer overflows
and underflows. Attackers exploit them to corrupt memory objects with malicious
writes, or leak secrets through unintended reads. Attacks can target both control data,
such as return addresses or function pointers, and non-control data, such as variables
storing user privilege levels.

To access a target object, an attack first estimates its address and next obtains a
pointer to the target location via a vulnerable buffer. It either exploits a vulnerable
buffer and a target object located in the same stack frame (intra-frame attack) or
in different ones (inter-frame attack). In a traditional stack organization, both stack
frames and per-frame objects are contiguously allocated in memory, so the attack
can safely rely on the predictability of the relative distance between the buffer and
the target object.
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3.2.2 Temporal Attacks

Temporal attacks exploit memory errors to access data outside the prescribed object
lifetime. Such attacks rely on predictable memory reuse to read/write data from a
newly allocated object via a reference to a deallocated object or, conversely, read
data from a deallocated object via a reference to a newly allocated object. Memory
errors which give rise to these attacks are commonly referred to as use-after-free and
uninitialized read errors, respectively. They can be successfully exploited to corrupt
or leak both control and non-control data.

On the stack, temporal attacks exploit erroneous memory accesses into deallo-
cated stack frames (via dangling pointers), or into uninitialized stack variables con-
taining old data. In a traditional stack organization, stack frames are allocated and
deallocated in a predetermined order, so an attack can determine which two objects
overlap across stack frame allocations and corrupt/leak the intended data. In this
scenario, the attack relies on the predictability of stack frame reuse induced by stack
memory allocation.

3.2.3 Defenses

Figure 3.1 compares the stack organization adopted by different stack protection
techniques, including StackArmor. Figure 3.1a shows the original stack layout.

Modern ASLR techniques introduce random gaps between stack frames [33; 66]
and between buffer and non-buffer stack objects [66], separating and permuting them
in two adjacent per-frame regions (Figure 3.1b). This strategy alone does not change
the order of the stack frames, nor does it isolate vulnerable stack buffers, leaving the
stack exposed to (spatial and temporal) guessing or spraying attacks. The problem is
exacerbated by the gaps being limited in size for practical reasons and often statically
determined for efficiency reasons [66]. These practical limitations result in even
poorer randomization entropy, stack frame reuse unpredictability, and resilience to
information leakage attacks.

Existing shadow stack techniques [33; 40; 85; 194] take a different approach,
isolating the (potentially) vulnerable stack buffers on a separate, but contiguous,
shadow stack (Figure 3.1c). This strategy alone does not prevent buffers from at-
tacking each other in a predictable way in intra- and inter-frame spatial attacks, nor
does it attempt to protect against temporal attacks.

In contrast, StackArmor completely disrupts the traditional stack organization,
creating the illusion that stack frames and vulnerable buffers are neither temporally
nor spatially adjacent in memory, but randomly drawn and isolated from one another
(Figure 3.1d). This strategy prevents all the spatial and temporal attacks considered.

Additionally, in contrast to most of the above mechanisms, StackArmor operates
entirely at the binary level, and can do so even in the absence of debug symbols.
Thus, StackArmor does not rely on access to source code or recompilation.
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Figure 3.1: Comparison of different stack protection techniques.

3.3 StackArmor Overview

Figure 3.2 illustrates the overall StackArmor architecture. It consists of three anal-

ysis modules, a binary rewriter, and a secure allocator. The analysis modules pro-
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Figure 3.2: High-level overview of StackArmor .

vide support for the binary rewriting, while the allocator is employed to ensure an
unpredictable allocation of stack frames. In this section, we describe the design of
StackArmor. We defer the implementation details until Section 3.4.

The three analysis modules statically analyze each function found in the binary
and determine what protection measures it requires. The Stack Protection (SP) an-
alyzer conservatively decides which functions are not provably safe from spatial or
use-after-free attacks, so need randomized (and isolated) stack frames. For this pur-
pose, the analysis pinpoints functions that compute pointers to local variables.

Functions that are not assigned randomized stack frames still require protection
from uninitialized reads. To this end, the Definite Assignment (DA) lists functions
which are not provably safe from uninitialized variables. When such a function
is called, StackArmor zero-initializes its relevant stack objects, effectively creating
the illusion that the stack frame has been allocated from a random pool of zero-
initialized frames and preventing potential errors from being exploited.

The Buffer Reference (BR) analyzer identifies stack buffers (and their references)
that are provably safe to relocate. This strategy is used to isolate potentially vulner-
able stack buffers from the original stack and prevent intra-frame spatial attacks. To
this end, the BR analyzer relies on information about location and size of all the per-
function stack objects, which is provided by debug symbols (if available) or dynamic
reverse engineering techniques [116; 168].

Next, StackArmor combines the results of the analyses and the Binary Rewriter

instruments all functions that cannot be conservatively proven safe. It creates a new
stack frame for each function call and for each stack buffer, while the Stack Frame

Allocator ensures at runtime that the frames are allocated in an unpredictable manner.
After statically rewriting the binary, the resulting (armored) binary can run natively.

3.3.1 Stack Protection Analyzer

The SP analyzer employs static analysis to conservatively identify functions that
cannot be proven safe from spatial and use-after-free attacks, so require stack protec-



3.3. STACKARMOR OVERVIEW 25

C
h
a
p
te

r
3

        
      function test_sp:         
        pushq   %rbp  
        movq    %rsp, %rbp
        subq    $32, %rsp
        movl    %edi, -4(%rbp)
        movq    %rsi, -16(%rbp)
        movl    $67305985, -24(%rbp)
        movslq  -4(%rbp), %rax
        movsbl  -24(%rbp,%rax), %edi 
        movq    -16(%rbp), %rax
        addq    $15, %rax
        andq    $-16, %rax
        leaq    -20(%rbp), %rsi           
        movq    %rsp, %rdx
        subq    %rax, %rdx
        movq    %rdx, %rsp                
        callq   helper_sp
        movl    -20(%rbp), %eax
        movq    %rbp, %rsp
        popq    %rbp
        ret

extern	void	
helper_sp(int,	int	*,	void	*);

int	
test_sp(int	i,	unsigned	long	size)
{
				int	ret;
				char	args[]	=	{1,	2,	3,	4};
				helper_sp(
								args[i],	
								&ret,	
								alloca(size));
				return	ret;
}

Figure 3.3: A sample SP-unsafe function that violates all three of the SP-safety rules imposed by

the SP analyzer.

tion. It classifies as SP-unsafe all functions that compute pointers to local variables.
These are functions which: (1) have stack-allocated buffers, (2) call alloca, or (3)
contain stack variables that have their address taken. Our algorithm is inspired by
the -fstack-protector-strong option in gcc [12], which uses similar anal-
yses (at the source level) to identify functions prone to buffer overflows. One key
difference is that our strategy is more generally tailored to locating any uses (and
possibly leaks) of pointers into stack objects, allowing our analyzer to also identify
functions prone to use-after-free attacks. Another difference is that operating at the
binary level raises more challenges since stack accesses are mediated by the stack
(or frame) pointer, generally subject to aliasing.

To address this challenge, the SP analyzer overapproximates the conditions above
using a data-flow analysis over the Control-Flow Graph (CFG) of every function. In
SP-safe functions, StackArmor allows references to stack objects only via the stack
(or frame) pointer and a constant offset. More specifically, for every function, the SP
analyzer performs a forward analysis of its CFG and marks the function as SP-unsafe

if any of the following SP-safety rules hold:

(1) The stack is accessed through the stack (or frame) pointer and an offset stored
in another register.

(2) The stack (or frame) pointer or derived pointers are stored into registers or mem-
ory outside the function’s prologue and epilogue.

(3) The stack (or frame) pointer is manipulated outside the function’s prologue and
epilogue.

The purpose of rule (1) is to detect when a stack buffer is accessed in its local
function, while rule (2) prohibits implicit accesses to stack variables, by confirming
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that their pointers are never stored or passed to callees. Finally, rule (3) detects
alloca invocations (and possibly other unsafe idioms).

The example function in Figure 3.3 violates all three SP-safety rules and is thus
classified as SP-unsafe.1 To read args[i], the function accesses the stack through
%rbp and %rax, violating rule (1). The second rule is violated when the func-
tion computes the address of ret and stores the resulting %rbp-derived pointer to
%rsi. Finally, the invocation of alloca causes a manipulation of the %rsp regis-
ter, which violates rule (3).

Because modern compilers typically generate very simple (and efficient) stack-
accessing instructions for functions that maintain no pointers into the stack, our
analysis can safely exclude these functions from instrumentation. As shown in
Section 3.5.3, our analysis classifies 80% of functions across the SPEC CPU2006
benchmarks as SP-safe (geometric mean).

3.3.2 Definite Assignment Analyzer

To determine the functions (and objects) that require protection from uninitialized
reads, the DA analyzer uses static analysis to conservatively identify all the DA-

unsafe objects. These are defined as stack objects that cannot be proven to be ini-
tialized before they are first read. Our strategy is inspired by similar source-level
analyses employed in safe languages to implement zero initialization semantics [91].
An important challenge when operating at the binary level is that object boundaries
are no longer exposed in the code in any obvious way. Another challenge is that
aliasing problems may generally prevent the analyzer from unambiguously mapping
all the accesses to stack objects.

To address these challenges, the DA analyzer relies on two key observations.
First, the functions that require uninitialized read protection are only those that have
been marked as SP-safe, since the others are already protected using randomization
and isolation. The SP-safe functions, by definition, have no buffers, pointers into the
stack, or stack-accessing instructions that our data-flow analysis cannot map into a
constant stack frame offset. In other words, we know that variables in SP-safe func-
tions are not initialized in other functions, which drastically simplifies our definite
assignment analysis by reducing it to a basic intra-procedural data-flow analysis [81].
Second, once our analysis has determined the constant stack frame offsets for all
stack load and store instructions, the rest of the analysis can simply operate at the
byte rather than the object level.

To determine functions and stack variables that require protection (and thus zero
initialization), the DA analyzer proceeds as follows. For every function, it traverses
its CFG in depth-first fashion and maintains a per-path tag map to keep track of the
bytes in the stack frame that are read or written to in the current path. For every
path, a first write-before-read event causes the DA analyzer to mark the target bytes
as path-safe and a first read-before-write event causes the DA analyzer to mark the

1All assembly listings presented in this chapter were generated with clang 3.3.
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      function test_da:         
      .LBB1_0: 
        subq    $24, %rsp
        movq    %rdi, 16(%rsp)
        cmpq    $11, %rdi
        jb      .LBB1_2 
      .LBB1_1  
        movl    $10, 12(%rsp)
        jmp     .LBB1_4 
      .LBB1_2:
        cmpq    $2, 16(%rsp)
        jb      .LBB1_4 
      .LBB1_3
        movl    $1, 12(%rsp)
      .LBB1_4:
        movl    12(%rsp), %edi     
        callq   helper_da
        addq    $24, %rsp
        ret

extern void 
helper_da(int);

int 
test_da(unsigned long size)
{
    int arg;
    if (size > 10)
        arg = 10;
    else if (size > 1)
        arg = 1;     

    helper_da(arg)
}

(a) Analyzed function.

0

1 2 3

4

12(%rsp) 16(%rsp) 

safe

safe safe

safe

efasnu efas

DA result: unsafe

safe

safe

(b) Control-Flow Graph and analysis results.

Figure 3.4: A sample DA-unsafe function. On the CFG path marked with solid arrows, the analyzer

cannot prove that 12(%rsp) (containing the arg variable) is initialized.

target bytes as path-unsafe. If the traversal reaches an unresolved control transfer or
a function call, it marks all the bytes that are not marked at all yet as path-unsafe.
At the end, all the bytes in the stack frame (and the function itself) that have been
marked as path-unsafe at least once are marked as DA-unsafe, thus requiring unini-
tialized read protection. The example function in Figure 3.4 is DA-unsafe, since the
analyzer cannot prove that on each CFG path, the stack location 12(%rsp) (con-
taining the arg variable) is written before it is read.

3.3.3 Buffer Reference Analyzer

For each function, the BR analyzer determines which stack buffers are safe to iso-
late in separate frames, meaning that all references to these buffers must be detected
and relocated as well. The isolation serves as a protection against intra-frame spa-
tial memory corruption attacks. To this end, the BR analyzer performs an intra-
procedural static analysis to unambiguously map all the instructions taking stack
addresses. StackArmor can safely isolate a buffer only if it proves that none of its
references are ever used to access other memory regions.

Even given information on the location and size of all the stack objects (as pro-
vided by debug symbols or dynamic reverse engineering techniques [116; 168]), the
mapping poses significant challenges. First, the stack (or frame) pointer is subject
to aliasing. Another difficulty is that unlike source-level solutions [18], we cannot
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      function test_br:         
        pushq   %rbp
        movq    %rsp, %rbp
        pushq   %rbx
        andq    $-64, %rsp
        subq    $192, %rsp
        movq    %rsp, %rbx        
        movq    %rdi, 160(%rbx)
        addq    $15, %rdi
        andq    $-16, %rdi
        movq    %rsp, %rdx
        subq    %rdi, %rdx
        movq    %rdx, %rsp
        leaq    64(%rbx), %rdi   
        leaq    60(%rbx), %rsi   
        callq   helper_br
        movl    60(%rbx), %eax
        leaq    -8(%rbp), %rsp
        popq    %rbx
        popq    %rbp
        ret

extern void 
helper_br(char *,int *,void *);

int 
test_br(unsigned long size)
{
    char buff[64] 
    __attribute__ ((aligned(64)); 

    int ret;      

    helper_br(
        buff, 
        &ret, 
        alloca(size));
}

(a) Analyzed function.

        movq    %rsp, %rbx        

        movq    %rdi, 160(%rbx)
        ...  
        leaq    64(%rbx), %rdi   
        leaq    60(%rbx), %rsi   

        callq   helper_br
        movl    60(%rbx), %eax

%rsp

%rsp
%rsp 64(%rsp)

60(%rsp)

source 

sink 

sink 

(b) Propagation by the BR analyzer of an explicit stack reference.

Figure 3.5: A sample function with an ambiguous stack reference. The %rbx base pointer, derived

from %rsp, is used to access two separate objects on the stack: the ret variable located at

64(%rbx) and the buff object at 60(%rbx).

assume that the relative layout of independent objects in memory is undefined. At
the binary level, references to stack objects are inherently ambiguous—due to intra-
procedural compiler optimizations, a reference to one object could later be used to
access a completely different object within the function.

Figure 3.5 illustrates the problem. In this example, clang reserves a dedicated
base pointer (%rbx) to access stack objects. The function prologue sets up the
pointer to point to the bottom of a fixed-size portion of the stack, excluding stack
space dedicated to Variable-Length Arrays (VLAs). In our example, this behavior is
induced by the presence of stack alignment for the buff object and the VLA allo-
cated on the stack using alloca [150]. In gcc, this situation is handled in a similar
way, mediating the necessary accesses to stack objects with a dedicated Dynamic

Realigned Argument Pointer (DRAP) register (typically %r10) [105]. Using an ad-
ditional register to access the stack causes a stack reference (movq %rsp, %rbx)
to be used to access distinct stack objects (both buff and ret) before calling
helper_br. As detailed in the figure, the BR analyzer detects the ambiguity and
refuses to remap the stack references for the given function.

The algorithm implemented in the BR analyzer operates in two steps. First, for
each function, it identifies and propagates all the explicit stack references down the
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CFG. The mechanism is inspired by the way prior techniques use constant propaga-
tion to discover targets of indirect calls [77; 170]. Next, the analysis verifies that
each reference targets a single stack object.

In the first step, the BR analyzer runs an intra-procedural flow-sensitive static
data-flow tracking analysis [63] to determine where stack addresses are dereferenced,
stored to memory, or escape the current function. It takes two types of taint seeds
present in the instructions of the CFG: constants and explicit stack references (i.e.,
operands of the form rsp+offset or rbp-offset, where offset is an im-
mediate value). The analyzer considers each reference in turn and treats this refer-
ence and all the constants as tainted. With this setup, for each control-flow path, it
propagates the tainted values down the CFG, in a depth-first fashion and builds up
expressions representing the computed values. When the propagation reaches a sink

instruction, it labels the propagated reference as follows.

(1) If the sink instruction accesses memory at an address tainted by the stack refer-
ence currently under consideration, we distinguish two cases. (a) The address
evaluates to a single stack location. In this case, the analysis locates the target
stack object, labels the reference accordingly, and then continues the propaga-
tion. (b) The address contains an unresolved index. This case causes the analysis
to label the reference as unknown and stop.

(2) If the sink stores a value tainted by the reference to memory, the analysis conser-
vatively assumes that the value is a valid pointer and proceeds as in (1).

(3) If the sink is a call instruction and a register holds a value tainted by the
reference, the analysis conservatively assumes that this register may contain a
valid pointer and proceeds as in (1).

Once the propagation completes, the analysis verifies that across all paths, each
reference is labeled with exactly one known object (i.e., a buffer). If this check fails,
the analysis conservatively reports no buffers for the current function. However, if
each reference can be successfully mapped into a single stack buffer, the analysis
reports on all the buffers and all the stack-referencing instructions that reference
those buffers. Note that, since our analysis is fully conservative, it may occasion-
ally fail to isolate some buffers (see Section 3.5). This conservative behavior is
needed to ensure that we produce no false positives, which would otherwise result
in instrumentation-induced undefined behavior.

3.3.4 Stack Frame Allocator

Figure 3.6 depicts the allocation strategy adopted in our stack frame allocator. For
each thread call stack, the allocator maintains a pool of F contiguous physical frames

(PFs), all preallocated in a random region of the virtual address space. Each phys-
ical frame consists of D data pages surrounded by 1 guard (non-mapped) page to
isolate frames from one another. To map logical frames into one or more physical
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Figure 3.6: StackArmor ’s stack frame allocation strategy.

stack frames, our allocator uses a frame map of F preallocated entries, each initial-
ized with a pointer to a physical frame. When allocating a frame at runtime, the
allocator fetches the next entry in the frame map and decrements the frame map
index, incrementing it again upon deallocation.

To ensure that the relative distance between physical frames is unpredictable, the
entries in the frame map are initialized with a random permutation of the physical
stack frames. This static randomization strategy efficiently protects against spatial
attacks, but in itself is insufficient for temporal attacks, since the entries in the frame
map can still be predictably reused across consecutive calls (e.g., in a loop). To pro-
tect against temporal attacks, our allocator performs in-place frame map randomiza-
tion, swapping the next entry with the entry located at a random offset R ∈ [1;Rmax]

before allocating a new frame. R is computed using a global counter and a random
number provided by the rdrand x86 instruction. This in-place randomization strat-
egy eliminates the need for free lists and efficiently satisfies all our requirements.

Because instrumented stack frames are allocated at page granularity with low
reuse, we take additional measures to minimize physical memory consumption. More-
over, we must comply to the restrictions on the maximum number of (guarded)
virtual memory areas (VMAs) imposed by the operating system (65,535 on stock
Linux). For these reasons, our allocator retains fine-grained control over the mem-
ory pages preallocated in the stack frame pool using predetermined soft limits. In
particular, while the parameter F establishes the maximum number of active stack
frames, a soft limit FSL determines how many frames are immediately made avail-
able to each application thread. The other F−FSL frames are initially all mapped as
consecutive inaccessible pages, allowing the operating system to consider them as a
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single VMA. When a thread exhausts its physical frames, our allocator doubles the
value of the soft limit FSL and remaps the new physical frames.

We use a similar adaptive strategy to manage the individual physical stack frames.
The soft limit DSL determines how many data pages are immediately made available
to each stack frame. The other D−DSL pages are initially all mapped as inaccessible.
In the rare cases when a stack frame requires more space, a user-level page fault
handler (a signal handler intercepting SIGSEGV signals) increases DSL on demand
using the same exponential growth strategy described earlier. The soft limit DSL is
restored to its initial value upon stack frame deallocation. The extra memory pages
are then also returned to the operating system (using POSIX MADV_DONTNEED,
similar to prior work [17]), and remapped as inaccessible.

The allocator configuration parameters are fully user-configurable, with carefully
chosen defaults that proved effective in our tests. The parameter Rmax controls the
entropy of our in-place randomization strategy. By default, StackArmor opts for
maximum entropy, using Rmax=FSL in non-threaded programs. In multi-threaded
programs, we gradually decrease the per-thread value of Rmax (and FSL) with the
number of active threads, by 5% for each newly created thread, with a minimum of
Rmax=FSL=128. This strategy strictly bounds physical memory consumption in
heavily threaded programs. To further reduce memory overhead (due to more resi-
dent physical frames) and performance overhead (due to poorer data cache locality),
users may also opt to configure lower Rmax values.

The maximum number of active stack frames F and the soft limit FSL default to
16, 384 and 1, 024, respectively. These values do not excessively reduce the number
of VMAs available to the program, resulting in a reduction of only 39% on stock
Linux for a program with 100 active threads within the soft limit. Moreover, the val-
ues can elastically adapt to programs with deep instrumented call stacks. The num-
ber of per-frame data pages D and the soft limit DSL default to the OS-specified
maximum stack size (2,048 pages on stock Linux) and 0.1D, respectively. This
yields a conservative stack allocation strategy while providing strong physical mem-
ory consumption guarantees.

3.3.5 Binary Rewriter

The binary rewriter uses the information provided by the analysis modules to guide
the instrumentation process. First, it instruments all the call sites invoking SP-unsafe

functions, so that each such function runs in a new randomized and isolated stack
frame, protected against inter-frame spatial and temporal attacks.

Figure 3.7 shows the functionality we add to instrumented call sites. Before each
instrumented call instruction, our allocator reserves an armored stack frame. We
then copy all the already pushed call arguments onto the new armored stack, and
redirect the stack pointer (%rsp) to the new frame. We save the return address
(pushed by call), the old %rsp, and the new %rsp in a dedicated context on a
separate stack. The callee now runs protected with an armored stack.
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Figure 3.7: Call site instrumentation in StackArmor .

We also instrument return (ret) sites, so that upon return of an armored function,
the armored stack frame is deallocated and the original stack resumed. Resuming
the original stack is done by restoring the saved %rsp, and pushing the saved (and
trusted) return address onto the stack just before the ret instruction.

Our call site instrumentation strategy is necessary to copy caller-specified argu-
ments, whose number may change across call sites due to variadic calls. However, it
may also complicate stack management when caller and callee cannot be statically
paired with one another. For instance, consider the case of indirect calls. Since we
can typically not determine statically whether their target is SP-unsafe or not, we
must conservatively instrument such call sites. However, if the callee turns out to
be SP-safe, the corresponding ret would not be instrumented, and execution would
return with %rsp still pointing into the armored stack frame.

To address this problem, the rewriter instruments the instructions following call
sites which contain indirect calls, library calls, and other special idioms such as
setjmp. This instrumentation code then restores the original stack and allows the
caller to resume execution consistently. Our setjmp instrumentation also checks if
control returned from a longjmp invocation. If so, it garbage collects all the deeper
(no longer needed) physical stack frames.

The complementary situation is also possible: an uninstrumented call site with an
instrumented SP-unsafe callee. For example, this case may occur when dealing with
uninstrumented libraries which call user-specified callbacks. To detect (and ignore)
this situation, the return site instrumentation checks if the current %rsp is lower than
the new %rsp in the most recent saved context. Our instrumentation strategy can ef-
ficiently handle all possible combinations of (instrumented or uninstrumented) caller-
callee combinations in a conservative way. Thus, StackArmor supports unrestricted
use of shared libraries and arbitrary optimizations driven by our static analyzers.

To protect against intra-frame spatial attacks, the rewriter instruments all the SP-

unsafe functions with buffers reported by the BR analyzer. In particular, it first instru-
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ments the entry site (i.e., after the function prologue) to relocate each reported buffer
into a new stack frame provided by the allocator. Second, it remaps all the stack-
referencing instructions reported by the BR analyzer to reference the corresponding
buffers in their own independent frames. These per-buffer frames are garbage col-
lected when the main armored frame is deallocated.

To protect the remaining SP-safe functions against uninitialized reads, the rewriter
instruments the entry sites of all stack regions reported by the DA analyzer, adding
zero-initialization code. We implement efficient zero-initialization semantics by co-
alescing multiple bzero writes into the same memory word (8 bytes).

3.4 Implementation

We implemented StackArmor for the Linux x86-64 platform, using PEBIL [114] to
statically instrument 64-bit ELF binaries, turning them into stand-alone armored bi-
naries. StackArmor is easily portable to other UNIX systems. In this section, we
discuss the disassembly requirements of our prototype, and also present implemen-
tation details of our instrumentation approach. We also discuss limitations of our
current StackArmor implementation.

3.4.1 Binary Disassembly and Analysis

StackArmor requires information about instructions, basic blocks, CFGs, and func-
tions. As discussed in Chapter 2, these primitives may suffer from inaccuracies or
incompleteness. It is often possible to make a tradeoff between these two properties,
for instance by sacrificing completeness for higher correctness (a conservative anal-
ysis). We show that StackArmor relies only on the correctness of disassembly and
not its completeness. It is designed to cope with incomplete information, gracefully
reducing security guarantees without breaking the binary. This section discusses the
disassembly requirements and tradeoffs applied in StackArmor.

3.4.1.1 Incomplete disassembly

As discussed in Chapter 6, we cannot rely on fully correct and complete static disas-
sembly of stripped x86/x64 binaries [22; 170; 188]. Challenging cases like indirect
control flows mean that many recovered primitives (especially CFGs and functions,
but potentially even instructions) may be incomplete. Thus, we must ensure that
StackArmor can be used safely (without affecting the semantics of the instrumented
binary) even if 100% accurate disassembly is not available. We discuss how StackAr-

mor deals with the following challenges.

(1) Unresolved jumps: To deal with unresolved jmp instructions (indirect jumps
whose targets remain unknown), our static analyses behave in a conservative way.
The SP analyzer classifies functions with an unresolved jump as SP-unsafe. Simi-
larly, the BR analyzer labels all buffers in such functions as unknown. The rewriter
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then isolates such functions by setting up a new armored stack frame. Should the
rewriter miss and fail to instrument a return instruction, StackArmor handles this
case without trouble, as discussed in Section 3.3.5. Since the DA analyzer never
analyzes functions already classified as SP-unsafe, it need not consider issues with
unresolved jumps.

(2) Unresolved calls: Similarly to unresolved jumps, the analyzers also deal with un-
resolved indirect call instructions in a conservative way. However, an unresolved
call does not influence the instrumentation of the calling function.

(3) Missing functions: Since StackArmor is not aware of functions which are missed
by the disassembly process, it simply does not analyze or instrument them. As dis-
cussed in Section 3.3.5, the binary rewriter ensures that the binary works well even
if an instrumented function calls an uninstrumented one, or vice versa. Therefore,
missing functions only result in a graceful reduction of security due to their not being
instrumented.

3.4.1.2 Stack pointers and function prologue

Our static analyses (Sections 3.3.1–3.3.3) consider explicit stack references: operands
of the form rsp+offset or rbp-offset. While this assumes the special role of
rsp and rbp, nothing bad will happen if (due to optimizations) rbp is not used as
the base pointer—the analyses are limited to references derived from the rsp regis-
ter. To detect function prologues, StackArmor follows the ABI for x86-64/Linux [9].
In this, rsp is a “sacred” register, inherently used by the important push, pop,
call, and ret instructions. Thus, in practice (for non-obfuscated binaries), we
can safely assume that rsp is used as the stack pointer.

3.4.1.3 Function arguments

As mentioned in Section 3.3.5, before a call, the binary rewriter copies all call
arguments already pushed onto the stack. To do this, it examines the basic block con-
taining the call instruction and checks how many bytes to transfer. Our approach
places only the following restrictions on the calling convention: (1) stack-based ar-
gument passing is done in a single basic block, and (2) callers make no assumptions
on how arguments are handled by callees. Though StackArmor is compatible with
more general solutions (as proposed in prior work [20; 21]), we are not aware of any
calling convention violating (1) or (2), and encountered no problems in our tests.2

3.4.2 Instrumentation

Our binary rewriter is based on PEBIL [114], an efficient static binary instrumenta-
tion platform for Linux. PEBIL can install hooks at arbitrary locations in a binary to

2Although tail calls violate (2), they do not require copying back callee-owned arguments, given that the
callee returns directly to the caller of the caller.
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call a predetermined handler enclosed in a shared library, with the instrumentation
automatically saving and restoring registers to create a consistent execution context.

For our purposes, we extended PEBIL in three ways. (1) We only save and re-
store registers actually used in StackArmor’s handler, so that we minimize context
switching costs for our instrumentation code (this is safe because StackArmor does
not use external library calls on the instrumentation path). (2) We implemented sup-
port for handlers enclosed in a static library (injected into the binary by our custom
rewriting tool elfinject), thereby eliminating the costs associated with indirect
PLT calls on the instrumentation path. This allows our stack frame allocator to be
implemented as a static library with efficient position-dependent code. (3) We al-
low PEBIL to access Thread-Local Storage (TLS), where our instrumentation stores
references to per-thread metadata and stack frames managed by our allocator.

3.4.3 Limitations

By default, PEBIL relies on symbols for function detection. However, this is not a
limitation of StackArmor itself, which is designed to handle incomplete disassembly
without breaking the binary, and while gracefully reducing its security guarantees (as
discussed in Section 3.4.1). As we discuss in Chapter 7, our novel function detector
Nucleus is capable of finding over 95% of the functions even in highly optimized
stripped binaries. When used in StackArmor, this would ensure that the vast majority
of stack frames is analyzed and (if needed) instrumented, even in stripped binaries.

Our current StackArmor implementation inherits PEBIL’s lack of support for
C++-style exceptions. Though this limitation can be addressed with additional imple-
mentation effort, this proved unnecessary for our tests with several real-world server
applications and benchmarks (Section 3.5).

3.5 Evaluation

We evaluated StackArmor on a workstation equipped with an Intel i7-4770K CPU
clocked at 3.90 GHz, a 256KB per-core cache, an 8MB shared cache, and 8GB of
DDR3-1600 RAM. We ran all our tests on an Ubuntu 12.10 installation running
Linux kernel 3.12 (x86-64).

For our evaluation, we selected several popular servers: lighttpd v1.4.28,
vsftpd v1.1.0, opensshd v3.5, and exim v4.69. To benchmark lighttpd, we
used the Apache benchmark [1] configured to issue 25,000 requests with 10 con-
current connections and 10 requests/connection. To benchmark vsftpd, we used
pyftpbench [5] configured to open 100 connections and request 100 files of size
1 KB per connection. To benchmark opensshd and exim, we used the OpenSSH
test suite and a homegrown script which repeatedly launches sendemail [7], re-
spectively. Moreover, to test StackArmor in memory-intensive scenarios and bet-
ter investigate the performance-security tradeoffs, we also evaluated with all the C
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benchmarks in SPEC CPU2006. We ran all our experiments 11 times, and report the
median. We ensured that the CPUs were fully loaded throughout our tests.

In our evaluation, the BR analyzer was given information on the location and size
of stack objects, generated from debug symbols. This means we evaluate StackAr-

mor’s best-case security guarantees. Under these circumstances, our BR analyzer
was able to identify (and isolate) 90.7% of the buffers on average across all our pro-
grams. As discussed in Sections 3.3.3 and 3.4.1, security guarantees reduce grace-
fully when debug information is not available, and (for instance) data structure re-
verse engineering techniques are used instead [168].

Our evaluation answers four key questions. (1) Security: Is StackArmor effec-
tive in protecting against both spatial and temporal stack-based attacks? (2) Perfor-

mance: Does StackArmor yield acceptable runtime overhead? (3) Memory usage:
How much memory does StackArmor require? (4) Multithreading: Does StackAr-

mor perform and scale well in multithreaded programs?

3.5.1 Security Against Spatial Attacks

To evaluate the security guarantees offered by StackArmor against spatial attacks, we
measured the attack surface reduction. This quantifies both the number of vulnerable
targets (stack-allocated objects) and the number of offenders (such as stack-allocated
buffers) in intra-frame and inter-frame attack scenarios.

3.5.1.1 Intra-frame attack surface reduction

The intra-frame attack surface Sintra(f) of a given function f quantifies the extent
to which the Bf stack-allocated buffers in f ’s stack frame threaten the Nf stack
objects in the same frame through potential buffer overflow/underflow attacks. Here,
Nf encompasses both non-control and control data, including the return address.

Sintra(f) =

Bf
∑

i=1

Nf
∑

j=1

canAttack(i, j) ? 1 : 0

Ideally, StackArmor reduces the attack surface induced by a traditional stack
organization (Bf × Nf ) to 0 (no buffer can predictably attack other intra-frame
objects). In general, however, the reduction is subject to the precision of our BR
analysis. Table 3.1 shows the mean intra-frame attack surface reduction across all
functions with stack-allocated buffers. We also compare against the protection of-
fered by traditional shadow stack techniques in the ideal case (source-level, with all
buffers remapped).

As shown in the table, StackArmor consistently yields a high attack surface re-
duction. We achieve 100% stack buffer isolation for lighttpd and vsftpd, and
a worst-case reduction of 94.4% for opensshd. We offer stronger security than tra-
ditional (source-level) shadow stacks, which (unlike StackArmor) also fail to prevent
in-frame attacks between buffers.
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Intra-frame Inter-frame

Shadowing StackArmor Shadowing StackArmor

(Source) (Source)

lighttpd 100.0% 100.0% 99.0% 99.9%
exim 96.1% 96.8% 97.2% 99.9%
opensshd 93.2% 94.4% 94.0% 99.9%
vsftpd 100.0% 100.0% 99.6% 99.9%

SPECgm 91.5% 95.95% 94.6% 99.9%

Table 3.1: Mean attack surface reduction for all functions with stack-allocated buffers.

3.5.1.2 Inter-frame attack surface reduction

The inter-frame attack surface Sinter(f) of a function f is subject to the probability
pk of the stack frame of the caller k (a function in the set of Cf callers of f ) being
active on the call stack before that of f . Note that while an attacker could potentially
overflow into any active stack frame (even of functions that do not call f directly),
the spatial predictability guarantees reduce as we move higher up the call stack.

Sinter(f) =

Cf
∑

i=k

[

pk ·

Bf
∑

i=1

Nkf
∑

j=1

canAttack(i, j) ? 1 : 0

]

To concretely compute Sinter(f) for our test cases, we assume pk to be a uni-
form distribution. That is, pk = 1/Cf for a traditional stack organization and
pk = 1/Rmax for StackArmor, with the swap size Rmax set to 1, 024 in our ex-
periments (see Section 3.3.4). To find the set of Cf callers for every given f , we
applied static callgraph analysis of our test programs using LLVM [112]. Our imple-
mentation relies on data structure analysis [113] (an efficient context-sensitive and
field-sensitive points-to analysis) to conservatively analyze function pointers used in
indirect calls.

Table 3.1 shows the mean inter-frame attack surface reduction across all func-
tions with stack-allocated buffers, comparing StackArmor against traditional (source-
level) shadow stack techniques. As the table shows, StackArmor yields a very high
inter-frame attack surface reduction of 99.9% across all our tests, consistently higher
than traditional source-level shadow stack techniques. The higher reduction com-
pared to our intra-frame analysis highlights the effectiveness of StackArmor in in-
creasing the randomization entropy in probabilistic attack models. Even when com-
pared to prior source-level stack randomization strategies that introduce random gaps
between objects [33; 94], StackArmor yields much stronger randomization guaran-
tees, ensuring that logically contiguous objects (and frames) are never physically
adjacent in memory.
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Basic +Intra-frame +UZero

lighttpd 1.06x 1.07x 1.10x
exim 1.01x 1.04x 1.05x
opensshd 1.00x 1.01x 1.01x
vsftpd 1.00x 1.01x 1.04x

SPECgm 1.16x 1.22x 1.28x

Table 3.2: Benchmark runtimes normalized against the baseline.

3.5.2 Security Against Temporal Attacks

To evaluate the security guarantees offered by StackArmor against temporal attacks,
we analyzed the unpredictability of stack frame reuse. To this end, we measured
the randomness of physical stack frame addresses generated by StackArmor. For
each of the benchmarked programs, we evaluated the randomness of stack frame ad-
dresses under four configurations: (1) Baseline, (2) StackArmor with Rmax=0, (3)
ASLR, and (4) StackArmor with Rmax=FSL= 1, 024. Our ASLR implementation
dynamically generates random inter-frame gaps g ∈ [0; 40KB] using the rdrand in-
struction. This actually yields higher entropy than modern ASLR techniques used in
practice [33; 66], which allow deterministic [33] or periodic [66] stack frame reuse
in loops, or use statically generated random inter-frame gaps [66].

To measure randomness, we conducted a non-parametric hypothesis test for ran-
domness (Bartels’ rank test [29]), with the null hypothesis that the sequence is gen-
erated randomly. For the first two configurations, p-values are consistently below
1.9e−7, and for ASLR they are below 9.3e−3. Thus, for these configurations, we
can reject the null hypothesis at significance level α = 0.01. In contrast, StackArmor

shows high p-values ∈ [0.37; 0.90], indicating that StackArmor yields truly unpre-
dictable stack frame reuse and strong protection against temporal attacks.

3.5.3 Performance

Table 3.2 and Figure 3.8 show the overhead induced by StackArmor, split into in-
dividual contributing factors. Table 3.2 shows runtime overheads, while Figure 3.8
depicts overheads in terms of number of cycles and executed instructions. The Basic

overhead shows the overhead due to mapping logical stack frames into randomized
stack frames (as maintained by our allocator) only. +Intra-frame and +UZero show
the resulting overhead when adding intra-frame protection and zero initialization se-
mantics, respectively. Finally, Rewriter only and Rewriter+Allocator (shown only
in Figure 3.8) isolate the costs of static rewriting (saving/restoring registers, and
jumping into StackArmor’s handler and back), and overhead due to stack frame allo-
cation/deallocation.

The Basic runtime overhead amounts to 16% on SPEC (geometric mean), and
only 6% in the worst case for the server binaries. Isolating individual stack buffers
adds an additional 6% overhead in the worst case. Finally, enabling zero initializa-
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Figure 3.8: SPEC CPU2006 performance overhead (#cycles and #instructions).

tion yields an overall overhead of 28% for SPEC (geometric mean), and 10% (worst
case) for the servers.

Figure 3.8 provides an explanation for the higher runtime overhead we observe
for SPEC CPU2006 compared to the server programs. This is due to heavily re-
cursive benchmarks such as perlbench; eliminating these reduces the geomet-
ric mean overhead by 10%. Moreover, Figure 3.8 shows that cycle and instruction
overheads are very similar to the runtime overheads, demonstrating that the reduced
cache locality induced by StackArmor is a relatively insignificant overhead factor.
We can also see that in most cases, binary rewriting costs dominate the overhead,
while allocation costs are a close second.

Table 3.3 shows the function characteristics of the SPEC CPU2006 benchmarks,
and details the instrumentation decisions made by our SP analyzer and DA analyzer.
The stack statistics (max depth and frame size) were measured during execution.
For comparison, we also show statistics for the -fstack-protector-strong
source-level analysis (SP-unsafe, source).

Our results show that our analyzers are effective at limiting instrumentation
overhead. In particular, our SP analyzer reported only 20% of the functions as
unsafe on average (geometric mean), coming close to the 16% rate achieved by
-fstack-protector-strong (which, unlike StackArmor, needs source). Over
all the SP-unsafe functions, our BR analyzer correctly identified 92.8% of the buffers
(geometric mean). Our DA analyzer classified 52% of the functions as unsafe, while
marking only 42% of stack objects in those functions for zero initialization.

Due to the limited number of unsafe (and thus instrumented) stack frames, none
of the tests required our allocator to dynamically increase the soft limit FSL, even
for the worst-case maximum stack depth of 394 frames (perlbench). As can be
seen in the relatively large maximum stack frame sizes observed (10.4KB, geometric
mean), many of the functions ran uninstrumented, efficiently reusing the physical
stack frame inherited from their caller. Even so, stack frames stayed small enough
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Functions (#) Stack

Total SP-unsafe SP-unsafe DA-unsafe Max depth Max frame
(Source) (StackArmor) (KB)

perlbench 1,885 397 409 1,227 394 8.7
bzip2 112 18 22 48 4 10.2
gcc 5,630 846 972 3,499 48 54.2
mcf 33 1 4 17 80 82.8
milc 244 73 77 91 9 80.5
gobmk 2,690 335 337 1,351 5 5.5
hmmer 548 118 121 324 1 2.8
sjeng 153 41 42 73 2 1.1
libquantum 127 27 31 56 1 2.0
h264ref 599 101 105 391 4 2.7
lbm 29 5 8 14 30 26.3
sphinx3 380 57 59 218 4 21.4

SPECgm 332 54 66 172 9 10.4

Table 3.3: Instrumentation decisions and call stack statistics for SPEC CPU2006.

to avoid the need for an increase in the soft limit DSL by our user-level page fault
handler (as shown in Section 3.5.4, memory overhead is also limited).

Overall, StackArmor provides a stronger and broader protection model than tra-
ditional shadow stack approaches, with comparable runtime overhead [33; 40; 58;
61; 85; 145; 166; 182; 194]. While source-level stack randomization approaches
achieve lower overhead, all existing work does so at the cost of poorer entropy and
isolation guarantees [33; 66]. These results show that StackArmor provides strong
security, while allowing an efficient and flexible security-performance tradeoff.

3.5.4 Memory Usage

StackArmor’s stack frame allocation strategy translates to higher virtual and physical
memory usage. Since virtual memory is plentiful in modern (x86-64) systems, we
focus our analysis on physical memory usage. Figure 3.9 depicts the resident set
size (RSS) increase for varying values of the maximum swap size Rmax. To isolate
the effects of varying Rmax, we configured StackArmor with the default number of
maximum stack frames and no soft limit (F = FSL=16, 384).

With Rmax=0, the RSS increase is only caused by internal fragmentation, since
stack frames are allocated at page granularity (0.2–0.5MB increase across our server
programs). Setting Rmax > 0 progressively reduces stack frame reuse, increas-
ing RSS linearly because a new (previously non-resident) stack frame is drawn for
(nearly) each call. For very large Rmax (e.g., Rmax = 10, 000), we observe a very
high RSS increase (0.7–118.5MB across our server tests). The cause for this behav-
ior becomes evident in some long-running SPEC benchmarks which continuously
call functions with many in-frame buffers. This quickly makes all StackArmor’s
physical stack frames resident in memory, resulting in a worst-case RSS increase of
195.1MB for SPEC. Clearly, there is a tradeoff to be made between randomization
entropy and RSS, and Rmax should typically be bounded. In our default configura-
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Figure 3.9: RSS increase due to StackArmor .
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Figure 3.10: RSS increase due to StackArmor in multithreaded programs.

tion with Rmax=1, 024 (which our previous experiments show to provide sufficient
entropy), the RSS increase for SPEC is limited to only 22MB (geometric mean).

3.5.5 Multithreading Support

We evaluated scalability in threaded programs on MySQL (v5.1.65), memcached
(v1.4.20), and Apache httpd (v2.2.23, mpm_worker_module). For each server,
we varied the number of worker threads T = [1; 100], matching the number of
concurrent connections/operations to T in our benchmarks. We evaluated Apache
using the Apache benchmark [1], configured to issue 25,000 requests and 10 re-
quests/connection. MySQL was evaluated using Sysbench OLTP [8], with 10,000
transactions using a read-write workload. For memcached we used the memslap
benchmark [3] with 1,000,000 operations. We configured StackArmor with the de-
faults described in Section 3.3.4 and full protection.

Runtime overhead for increasing T is nearly constant (29–33% for Apache, 35–
37% for MySQL, and 13–15% for memcached). This owes to the servers’ thread
pooling strategies, minimizing the need for StackArmor to allocate per-thread meta-
data on the fast path. The relatively high overhead compared to non-threaded pro-
grams is due to extra TLS-accessing costs incurred by StackArmor to implement
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thread-safe allocation and instrumentation. Since these costs are bounded even for
T =100, they do not impair StackArmor’s ability to scale efficiently.

The RSS increase grows linearly with the number of threads, due to the per-
thread stack frame pools maintained by our allocator. As can be seen in Figure 3.10,
StackArmor’s ability to adapt Rmax to the number of active threads results in a worst-
case RSS increase of only 115MB (MySQL, with T = 100). Thus, StackArmor

provides reasonable scalability even for heavily threaded servers. At the same time,
it preserves strong randomization entropy guarantees, with Rmax={299, 474, 878}

for the default thread configurations of Apache httpd, MySQL, and memcached,
respectively.

3.6 Related Work

Protection from stack-based vulnerabilities Early stack protection work often re-
lies on canaries [12; 64; 87]. These only affect spatial (smashing) attacks and are
susceptible to information leakage. Shadow stacks offer stronger isolation, but are
ineffective against temporal attacks and typically limited to buffer-to-non-buffer at-
tacks [33; 40; 58; 61; 85; 145; 166; 182; 194]. Traditional Address Space Layout
Randomization (ASLR) randomizes the base of the stack [10; 32; 137]. However,
this still allows attacks that rely only on the relative distance or reuse between stack
objects. Fine-grained ASLR also introduces random gaps between stack frames and
buffers/non-buffers [33; 66], but remains vulnerable to spraying attacks and infor-
mation leakage. Moreover, it offers no isolation of stack objects.

Protection from temporal attacks Prior work explores protection against heap-
based use-after-free vulnerabilities, through garbage collection [36; 148], secure al-
location [17; 30; 80; 122; 134], and dynamic memory checking [43; 47; 129; 162].
StackArmor applies some ideas from this work to the stack, such as fully random-
ized allocation [30; 122; 134] with a sparse page layout [134] and a single ob-
ject per page(s) [122]. Some dynamic tools can detect uninitialized reads on the
stack [43; 47; 129; 162], but they incur very high overhead. More lightweight ap-
proaches sacrifice precision for performance [30; 94]. StackArmor implements both
strong and lightweight protection against uninitialized reads. StackArmor’s zero ini-
tialization is comparable to secure deallocation (which is, however, quite expensive
on the stack) [59]. Definite assignment analysis, similar to our binary-level approach,
has been implemented before using source [68; 79; 80; 91; 104].

Protection from generic memory errors A myriad of generic memory error pro-
tection approaches have been explored in the last decade. Many popular techniques,
including data flow integrity [50], write integrity testing [18], bounds checkers [19;
78; 193], and memory safe environments [68; 79; 80; 104; 128], require source
code or recompilation. Binary-level approaches, including Control-Flow Integrity
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(CFI) [15; 197], Instruction Set Randomization (ISR) [143], ROP protection sys-
tems [56; 136], and Dynamic Taint Analysis (DTA) [62; 130] can stop various
control-flow diversions, but (unlike StackArmor) do not protect non-control data.
Moreover, techniques like DTA [62; 130], multi-variant execution [65; 155; 156],
and tools like Valgrind [129] and Dr. Memory [43] often incur performance over-
heads of an order of magnitude or more.

3.7 Conclusion

Nearly two decades after the first stack smashing attack, performance concerns still
lead modern compilers to ship with weak stack protection mechanisms, ultimately
resulting in binaries left at the mercy of attackers. We have introduced StackArmor, a
novel comprehensive stack protection system which offers a practical solution to this
problem. Unlike prior systems, StackArmor can efficiently protect against arbitrary
spatial and temporal stack-based attacks, operates entirely at the binary level, and
supports policy-driven defenses to allow end users to tune the performance-security
tradeoff. To achieve this, StackArmor abandons the traditional stack organization
and relies on a combination of randomization, isolation, and zero initialization to
create the illusion that stack objects are drawn from a fully randomized space. We
use a novel static binary analysis approach to limit protection to stack frames that
truly need it, greatly reducing performance overhead. Our experimental results show
that StackArmor is practical, efficient, and provides more comprehensive protection
than all prior binary- and source-level solutions.
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Chapter 4

Practical Context-Sensitive

Control-Flow Integrity

Control-Flow Integrity (CFI) is a well-established family of techniques to prevent
control-flow diversion attacks by restricting control edges to a set of well-defined le-
gal flows. Current CFI implementations track control edges individually, insensitive
to the context of preceding edges. Recent work demonstrates that this leaves suffi-
cient leeway for powerful ROP attacks. Context-sensitive CFI, which can provide en-
hanced security, is widely considered impractical for real-world adoption. Our work
shows that Context-sensitive CFI (CCFI) for both the backward and forward edge
can be implemented efficiently on commodity hardware. We present PathArmor,
a binary-level CCFI implementation which tracks paths to sensitive program states,
and defines the set of valid control edges within the state context to yield higher preci-
sion than existing CFI implementations. Even with simple context-sensitive policies,
PathArmor yields significantly stronger CFI invariants than context-insensitive CFI,
with similar performance.

4.1 Introduction

Control-Flow Integrity (CFI) [15] has developed into one of the most promising
techniques to stop code reuse attacks against C and C++ programs. Typically, such
attacks circumvent common defenses such as DEP/W⊕X by diverting a program’s
control flow to a set of Return-Oriented Programming (ROP) gadgets [52; 163].
Similarly, they defeat widely deployed ASLR by either targeting gadgets at fixed
(non-randomized) addresses [39], or by dynamically disclosing the addresses of ran-
domized gadgets [171]. CFI promises to prevent all such attacks by ensuring that
all control transfers conform to the program’s original Control Flow Graph (CFG).
In theory, CFI is very powerful and, in its purest and ideal form, provably secure
against most integrity violations of the control flow [13].

45
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Ten years after the original CFI proposal [14], however, researchers are still
working to find practical CFI implementations [56; 90; 111; 136; 177; 197; 199],
able to approximate the security of the purest form of CFI with acceptable perfor-
mance. Common CFI solutions, including state-of-the-art binary-level implemen-
tations such as bin-CFI [199] and CCFIR [197], attempt to substantially relax con-
straints on the set of legal targets for both the backward edge (e.g., ret instructions)
and forward edge (e.g., indirect call instructions). While doing so reduces the per-
formance overhead to only a few percent, it also provides more degrees of freedom
for attackers. Other even more lightweight CFI solutions, such as ROPecker [56] and
kBouncer [136], build on heuristics and hardware support to detect anomalous con-
trol flows (which resemble ROP gadget chains) and stop many current exploitation
attempts at low performance overheads. Unfortunately, a string of recent publica-
tions comprehensively shows that it is possible to circumvent all these lightweight
CFI solutions with relatively little effort [49; 76; 96; 97; 158].

A key problem with traditional CFI solutions (even recent source-level fine-
grained ones [177]) is that they enforce only context-insensitive CFI policies, which
examine control edges in isolation and attempt to statically derive the resulting su-
perset of all the possible targets according to the CFG. The lack of context inevitably
results in weak CFI invariants, allowing attackers to freely chain edges together and
form paths that are even trivially infeasible in the original CFG (e.g., returning to a
function never on the active call stack [97]).

Context-sensitive CFI techniques are a promising way to address this problem,
since they rely on context-sensitive static analysis to associate CFI invariants to
control-flow paths (i.e., multiple consecutive edges) in the CFG and enforce such
invariants on execution paths at runtime. The stronger security guarantees provided
by context-sensitive CFI have been acknowledged as early as in the original CFI pro-
posal, but their real-world adoption has been rapidly dismissed as impractical [14].

In this chapter, we demonstrate that Context-sensitive CFI (CCFI) can indeed
be implemented in an efficient, reliable, and practical way for real-world applica-
tions. We present PathArmor, the first binary-level CCFI solution which enforces
context-sensitive CFI policies on both the backward and forward edges. PathArmor

relies on commodity hardware support to efficiently and reliably monitor execution
paths to sensitive functions which can be used to mount control-flow diversion at-
tacks [136], and uses a carefully optimized binary instrumentation design to enforce
CCFI invariants on the monitored paths. PathArmor’s path invariants are derived
by a scalable context-sensitive static analysis performed over the CFG on-demand,
which uses caching of path verification steps to achieve high efficiency. Verification
itself is also very efficient, since all the CFI checks are batched at sensitive program
points. We release PathArmor open source.1

To show the practicality of our design, we prototype two context-sensitive and
binary-level CFI policies (for the backward and forward edges, respectively) on top

1PathArmor is available at https://github.com/dennisaa/patharmor.

https://github.com/dennisaa/patharmor
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of PathArmor. Moreover, our framework can also serve as a general foundation
for even stronger CCFI implementations, for instance using context-sensitive data-
flow analysis at the source level. Even in the current setup, PathArmor provides
a comprehensive CCFI protection system with much stronger security guarantees
than traditional CFI solutions, while matching or even improving their performance.
Moreover, due to its optimized design, PathArmor can also serve as an efficient basis
for fine-grained context-insensitive CFI (CCFI) policies.

Contributions Our contribution in this chapter is threefold.

• We identify the key challenges towards practical CCFI implementations and
investigate opportunities to address these challenges in real-world applications
and commodity platforms.

• We present PathArmor, a framework to efficiently support arbitrary context-
sensitive and context-insensitive CFI policies on commodity platforms. To
fulfill its goals, PathArmor relies on hardware support, binary instrumentation,
and on-demand static analysis to batch even sophisticated CFI checks at the
relevant sensitive points in a binary. We complement PathArmor with fine-
grained CCFI policies and simple but comprehensive (backward and forward
edge) CCFI policies, making it the first practical CCFI implementation.

• We evaluate PathArmor on popular server applications and the SPEC CPU2006
benchmarks. Our results show that PathArmor can significantly restrict the
number of legal control flows compared to traditional CFI solutions (−70%

across all our applications, geometric mean), while yielding bounded memory
usage (+18–74MB overall) and low runtime performance overhead (3% on
SPEC and 8.5% on the servers, geometric mean).

4.2 Context-sensitive CFI

The general goal of every CFI solution is to allow all the control flows which occur in
the interprocedural control-flow graph (CFG) defined by the programmer, and reject
the largest possible fraction of the other flows as illegal [15]. This section formalizes
the definition of a legal flow adopted in existing practical CFI solutions, contrasts it
with the stricter definition adopted in Context-sensitive CFI (CCFI), and details the
key challenges towards practical CCFI.

4.2.1 Legal flows

We model a CFG as a digraph G = (V,E) where V is the set of basic blocks, and E

the set of control edges in the CFG defined by the program.
Traditional CFI [15] enforces that each individual (indirect) control transfer taken

by the program during the execution must match an edge in the CFG:
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Context-insensitive CFI (CCFI). For each control transfer ei = (vx, vy) between

basic blocks vx and vy, CCFI enforces that ei ∈ E.

That is, CCFI checks conformance to the current position in the CFG and does
not distinguish between different paths in the CFG that lead to a given control trans-
fer. For instance, consider the following two paths that both lead to function E():
A(){ indirect call to B(); } C(){ indirect call to D(); }

B(){ indirect call to E(); } D(){ indirect call to E(); }

Disregarding the context would allow E to return to either B or D. However,
we should only allow a return (backward edge) to B, when coming from A (via B).
Likewise, we should only allow a return to D if the program got there via C.

As an example for the forward edge, suppose B and D both call E with callback
argument cbB and cbD, respectively. When E invokes the callback, CCFI would
allow either target, while taking the context into consideration would allow us to
(rightly) conclude that cbB is only legal if we reached E via B.

To mimic context-sensitive behavior on the backward edge, a number of existing
CFI solutions use a shadow stack [33; 54; 58; 61; 85; 145; 152; 166; 194]. However,
shadow stacks are often expensive at the binary level [54; 74; 166]. Moreover, unlike
CFI techniques, their security relies on the integrity of in-process runtime informa-
tion, typically protected using system-enforced ASLR which is prone to probabilistic
attacks against its memory protection guarantees.

All existing CFI solutions implement fully context-insensitive (CCFI) policies
as described above. In addition, some binary-level solutions, like CCFIR [197] or
binCFI [199], further relax their CCFI policies for performance. These implementa-
tions group control transfer sources and destinations based on a general definition of
type, and enforce that the source and destination type match:

Practical CCFI. For each control transfer ei = (vx, vy) between basic blocks vx
and vy, practical CCFI ensures x ∈ sources(type(ei)) ∧ y ∈ sinks(type(ei)),

where sources(τ) and sinks(τ) denote the sets of program locations having out-

bound or inbound edges of type τ , respectively.

While practical CCFI precludes malicious control transfers like jumps into the
middle of a function, or returns to non-call sites, attackers can still successfully
mount powerful attacks using gadgets which adhere to the imposed type restric-
tions [48; 49; 76; 96; 158].

CCFI provides stronger CFI invariants than both practical and ideal CCFI. Rather
than considering control transfers individually, CCFI examines each transfer in the
context of recently executed transfers:

CCFI. Given a path p = (e1, e2, . . . , en) of control transfers leading to a given

program point P , CCFI verifies the validity of P by checking that ∀i ∈ {1, 2, . . . , n},

edge ei is consecutively valid in the context of all preceding CFG edges e1, . . . , ei−1.

Since CFI checks are enforced per path (not per edge), CCFI can enable arbitrar-
ily powerful context-sensitive policies on both the backward and forward edges.
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4.2.2 Challenges

In this section, we discuss the three fundamental challenges towards practical CCFI.
Subsequently, the remainder of this chapter presents PathArmor, the first practical
binary-level solution to these problems.

C1: Efficient path monitoring A major challenge in implementing a practical CCFI
solution is identifying an efficient mechanism to constantly monitor paths of exe-
cuted control flow transfers at runtime. Other than imposing minimal performance
overhead, the path monitoring mechanism should also be reliable. That is, neither
the program nor the attacker should be able to tamper with the recorded data. All
these requirements were considered the key obstacle to the real-world adoption of
context-sensitive CFI in the original CFI proposal [14]. To address this challenge,
PathArmor relies on branch recording features available in modern x86-64 proces-
sors to implement efficient and reliable path monitoring.

C2: Efficient path analysis To verify the validity of a path to a given program point
P , CCFI needs to statically analyze the CFG and identify the legal paths to P in a
context-sensitive fashion, validating all the edges in the path. The naive solution,
statically enumerating all legal paths to all the relevant program points, cannot scale
efficiently, with the number of paths growing exponentially with |V | and |E|.

This path explosion problem is well known in several domains (symbolic execu-
tion, among others [109]). Even focusing our static analysis on a particular program
point and sequence of indirect control transfers derived by runtime information only
partially eliminates this problem. Path explosion can still occur between any two in-
direct control edges, especially in the presence of loops and long sequences of direct
jumps and calls.

To address this challenge, PathArmor relies on an on-demand, constraint-driven
context-sensitive static analysis over a normalized CFG representation. The con-
straints, derived by runtime information recorded by our path monitor, allow our
context-sensitive path analysis to efficiently scale to arbitrarily large and complex
CFGs.

C3: Efficient path verification To detect control-flow diversion attacks, CCFI needs
to carefully select program points to verify the current execution path for validity. To
provide strong security guarantees, path verification needs to be performed in all ex-
ecution states that are potentially harmful. The naive solution, performing path veri-
fication after every executed control transfer, is clearly inefficient and scales poorly
with path length.

To address this challenge, PathArmor relies on a kernel module to efficiently
verify only the paths to well-defined sensitive functions in the program. While the
verification still needs to run for each path to these functions encountered during exe-
cution, PathArmor aggressively caches verification results to minimize the resulting
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Figure 4.1: Overview of PathArmor .

impact on runtime performance. Since the number of paths to sensitive functions is
limited in practice (as shown in Section 4.5.3 for popular server programs), caching
is effective in amortizing path verification costs throughout the execution.

4.3 PathArmor Overview

Figure 4.1 presents a high-level overview of PathArmor and details its three main
components: (1) a kernel module, (2) an on-demand static analyzer, and (3) an in-
strumentation component.

PathArmor relies on a kernel module which provides a Branch Record core to
support per-thread control transfer monitoring in multi-process and multi-threaded
programs. For this purpose, our module uses the 16 Last Branch Record (LBR) reg-
isters available in modern Intel processors and only accessible from ring 0. This
strategy allows our module to monitor paths of (16) recently exercised control trans-
fers in an efficient and reliable way (addressing C1).

In addition to path monitoring, our kernel module triggers path verification steps
upon security-sensitive system calls issued by the program (and other special sen-
sitive operations, as detailed later). To further improve the performance of path
verification, our module also maintains a path cache, which stores hashes of previ-
ously verified paths and eliminates the need to enforce more expensive CCFI checks
at each verification (addressing C3). We discuss our kernel module in more detail in
Section 4.3.1.

Once the kernel module is loaded, protected program binaries run with our dy-

namic instrumentation component, which instruments the binary at load-time. This
component first starts our path analyzer, an external trusted component which runs
in the background and waits for path verification requests from the kernel module
via a dedicated upcall interface.
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To satisfy path verification requests, our analyzer receives all the necessary LBR-
based path information, as well as constraints on indirect and interprocedural direct
control transfers, from our kernel module and performs static analysis on-demand to
enforce our CCFI policies. For this purpose, the analyzer reconstructs the CFG of the
target binary and preprocesses it with a preliminary CFG reduction step that prunes
all the irrelevant intraprocedural edges from the control-flow graph. This step and
our constraint-based strategy eliminate all the intraprocedural and interprocedural
path explosion threats, ensuring a scalable on-demand path analysis (addressing C2).

After determining whether a path is valid, our analyzer reports its findings back
to the kernel module, which, in response, stops the program (if verification fails) or
populates the path cache (otherwise). We elaborate more on our path analyzer in
Section 4.3.2.

After initializing the path analyzer, our instrumentation component sets up an
in-program communication channel with the kernel module to enable (and later
manage) path monitoring for the target binary. Finally, we instrument the binary
according to a predetermined sensitive path termination policy.

PathArmor can be configured to verify either full paths to sensitive system calls
or truncate paths at the library call interface. Our current implementation uses the
latter mode of operation by default, given that the LBR in its current incarnation on
commodity hardware can only record the 16 most recently executed control transfers,
and allowing branch tracing inside the libraries can potentially “pollute” paths and
thus erase program context. This observation was also made in prior work [136].

The tradeoff (which can be reconsidered with future hardware extensions) is that
PathArmor’s default configuration can defend against control-flow diversion attacks
only in the program, excluding attacks originating from vulnerabilities in libraries.
We evaluate the feasibility of future in-library path tracking in Section 4.5.5. We
discuss our instrumentation component in more detail in Section 4.3.3.

4.3.1 Kernel Module

As illustrated in Figure 4.1, the kernel module consists of two main components:
(1) a system call interceptor that sends validation requests (via a cache) to the on-
demand static analyzer, and (2) a Branch Record core (LBR API) that monitors and
records branches occurring within the protected binary’s main address space.

4.3.1.1 System Call Interception

As mentioned in Section 4.2.2, PathArmor limits verification to a small number of
security sensitive path endpoints in order to maintain minimal runtime overhead. In
particular, these endpoints consist of a set of dangerous system calls an attacker
requires to deploy a meaningful exploit, like exec and mprotect (and other sen-
sitive operations, see Section 4.3.3.3). We refer to them as sensitive calls. Like other
work in this area [56], we propose to monitor only these dangerous endpoints, rather
than every possible library and system call.
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To intercept system calls at runtime, the kernel module installs an alternative
syscall handler. When our target requests execution of a dangerous system call, we
pause execution, collect LBR data, and forward it to the on-demand static analyzer
in user space. If the analyzer returns true (meaning that the path was found in
the CFG and thus is valid), the kernel module stores a hash of the path in a cache
data structure before permitting the system call. We use cryptographically secure
second-preimage resistant2 hash algorithms (MD4 in our evaluation) to prevent path
crafting attacks, where attackers craft an invalid path with a hash that collides with
that of a valid path.

If the exact same path is executed a second time, PathArmor finds its hash in the
cache, obviating the need for a new validation. In general, PathArmor only sends a
request to the on-demand static analyzer if no match was found in the cache. This
limits the amount of overhead caused by traversing the CFG.

In the event that the on-demand static analysis returns false (no valid path
was found in the CFG), the module stops the program and reports that an attack
was detected. With the LBR data still in place, this can also help pinpoint the exact
location of the attack.

4.3.1.2 Branch Recording

In addition to path verification, the kernel module provides a Branch Recording core
that implements support for tracking branches on a per process-thread basis. In addi-
tion, it exposes an interface to the instrumented libraries that is used to disable branch
recording during library execution. PathArmor can record branches either using the
LBR (the current default) or Intel’s Branch Trace Storage (BTS) feature. Although
prior work has shown that BTS imposes a significant performance slowdown (typi-
cally in the order of 20–40x [172]), its “unlimited” nature provides a useful means
to enable in-library tracking, and to measure how many LBR registers are required
to approach optimal security (Section 4.5).

Ideally, we would configure the Branch Recording core to collect only indirect
branches (indirect jumps, indirect calls and returns), as only these branches can
be modified by an attacker. However, armed only with information about indirect
branches exercised by the program, we cannot eliminate the path explosion problem.
To solve this issue, we instruct the Branch Recording core to keep track of direct call
instructions as well, which can be used by the on-demand static analysis to eliminate
path explosion, rendering PathArmor efficient in practice. We elaborate more on this
in Section 4.3.2.

To disable branch recording during library execution, we expose two ioctl()
requests to libraries: LIB_ENTER and LIB_EXIT. The dynamic instrumentation
component detailed in Section 4.3.3 inserts these requests for each used library func-
tion by instrumenting their entry and exit points. We discuss related implementation

2For a second-preimage resistant hash algorithm h and input x, it is computationally hard to find a second
input x′ 6= x such that h(x) = h(x′).
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challenges, such as how to enable branch recording again for callbacks, in depth in
Section 4.4. Note that attackers cannot abuse ioctl requests to disable PathArmor,
as discussed in Section 4.6.3.

4.3.2 Path Analyzer

The path analyzer verifies at runtime (but using the static CFG) if a particular path
observed at an endpoint is valid. It consults the CFG of the binary and searches it
for the path. We now discuss the three main steps of this analysis: CFG generation,
CFG reduction to eliminate the path explosion problem, and path validation.

4.3.2.1 CFG Generation

To validate a path, PathArmor requires an accurate CFG of the protected binary. To
obtain a CFG, we use existing binary analysis frameworks to disassemble and ana-
lyze binaries, as detailed in Section 4.4. Though previous work shows that the CFG
can be obtained with reasonable accuracy [46; 198] (as confirmed by our findings
in Chapter 6), PathArmor still chooses to err on the safe side, tolerating potential
errors by overestimating the CFG when necessary. In the worst case, this may cause
PathArmor to accept invalid paths, but it will never reject legitimate ones. Further-
more, PathArmor implements indirect edge resolution policies to augment a CFG
walk with indirect edges in a context-sensitive manner. If these policies fail, we
resort to a fine-grained context-insensitive policy instead [197; 199].

For backward edges (i.e., returns), our policies implement a fully context-sensitive
resolution strategy, to which we refer as call/return matching. This strategy emulates
a runtime call stack by tracking call and return edges as these are encountered.

For forward edges (i.e., indirect calls), our current prototype supports a sim-
ple context-sensitive strategy which resolves code pointers propagated across caller-
callee pairs with no contrived data flow. This policy lets us unambiguously resolve
indirect call sites, at which call targets are loaded as constants and passed as a call-
back argument. However, our path abstraction, in principle, enables much more
complex context-sensitive extensions. We evaluate the additional security provided
by forward-edge context-sensitivity in Section 4.5. In cases where our current policy
is unable to trace a code pointer (e.g., in case of a long-lived code pointer stored on
the heap), PathArmor resorts to a CCFI policy which matches all indirect call sites
with all the functions that have their address taken.

Indirect jumps, in turn, are conservatively resolved by the underlying binary anal-
ysis framework. We also implement a strategy to augment the precision of indirect
jumps found in PLT entries. The CFG is updated with data received from the in-
strumentation component, enabling unambiguous target resolution. We discuss this
resolution in more detail in Section 4.3.3.1.
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4.3.2.2 CFG Reduction: Addressing Path Explosion

As discussed in Section 4.2, static analysis of large CFGs may lead to a path explo-
sion problem, where the number of paths to explore increases exponentially with
the exploration depth. PathArmor takes two measures to address the problem and
perform efficient path verification.

First, as a preprocessing round, PathArmor performs a CFG reduction step that
significantly prunes the CFG, and preserves reachability relations with respect to
indirect edges and interprocedural direct edges. This step finds all possible paths of
direct edges between entry and exit points of each function, and then collapses these
paths down to a single edge between each entry point and the exit points reachable
from it. This makes the subsequent search much faster, as needless (re-)explorations
of direct edges can be avoided (e.g., loops).

Second, call/return matching (discussed in Section 4.3.2.1) allows us to recog-
nize and discard impossible paths, such as paths that call a function from one call
site, and subsequently return to another call site. Without call/return matching, the
path search would have no way of identifying such mismatches.

4.3.2.3 Path Verification

The path analyzer is responsible for verifying the validity of a given path. The path
is an LBR state containing direct and indirect calls, indirect jumps, and returns. To
verify whether it is valid, the analyzer performs a Depth-First Search (DFS) on the
CFG to find a path that contains the provided edges in the same order as they were
recorded by the LBR. A recorded path is thus considered valid iff: (1) all edges in
the LBR state exist within the CFG, and (2) every pair of two consecutive edges can
be linked together via a valid path of direct edges within the CFG.

To ensure that the search terminates quickly if a path does not exist (e.g., the LBR
state is malicious), the DFS does not follow indirect edges or direct call edges. Fol-
lowing such edges would not make sense, because by definition, such edges would
be in the LBR state if they occurred on the path under analysis.

Note that due to our use of direct call recording in the LBR and our CFG reduc-
tion step, the DFS cannot get stuck on cycles within the CFG. Indeed, it first consults
the LBR for the oldest recorded branch, from a basic block A to a basic block B, and
then loops over all possible outgoing edges of B to see which one to follow. Due
to the CFG reduction, direct jump edges are collapsed, so the outgoing edges of B
are all either indirect edges or direct call edges. For each edge the DFS examines, it
checks whether this edge is the next recorded branch. If this does not hold, it tries
the next edge, until it finds one that matches the following LBR state. From here, it
restarts analysis, starting from this new edge. This process continues until the last
edge (the most recently recorded branch) is found.
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4.3.3 Binary Instrumentation

The instrumentation component consists of a library instrumentation module (a spe-
cial loader), and a dynamic binary instrumentation module. Its main objectives are
(1) collecting address offsets (for both libraries and the target program) and passing
these to the static analysis component, (2) instrumenting libraries such that they dis-
able LBR tracking before their execution starts and re-enable it again once finished,
and (3) starting the actual target process. In addition, the instrumentation compo-
nent opens a communication channel with the kernel module that is used by the
instrumentation code to communicate with the Branch Recording core.

Although our rewriter is dynamic in the sense that it inserts instrumentation at
runtime (when the binary or a library is loaded), it is not a pure dynamic approach as
described in Chapter 2.3. That is, rather than instrumenting on the fly, we completely
rewrite each module as soon as it is loaded. Therefore, our approach does not suffer
from the high runtime overheads mentioned in Chapter 2.3.

4.3.3.1 Loader

The loader sets up the PathArmor environment before starting the protected binary. It
is implemented as a pre-loaded shared library using LD_PRELOAD, and instruments
the target binary’s main() function. This hook then opens an ioctl() interface
with the LBR API of the kernel module, which is used by the inserted code snippets
to notify the kernel module of specific events (e.g., LIB_ENTER).

In addition, the loader collects the program’s PLT and GOT entries as well as the
base addresses of the different libraries that are in place. It passes this information
via the kernel module to the on-demand static analyzer so that it can distinguish calls
to library functions from branches within the program’s main address space. To this
end, the target program is started with LD_BIND_NOW=1, causing the dynamic
linker to resolve all symbols at program startup instead of using the default lazy
function call resolution behavior.

4.3.3.2 Rewriter

By default, PathArmor truncates paths at library boundaries. For this purpose, our
dynamic instrumentation module rewrites all library functions that are used by the
program (i.e., those listed in the PLT, as well as those dynamically loaded using
dlsym()). The inserted instrumentation ensures that library functions first send
an LBR disable request to the LBR API in the kernel module before executing, and
finish with an LBR enable request before returning to the program.

A library function may at some point invoke a callback handler which may or
may not reside in the target’s address space. If we do not re-enable the LBR again
on callbacks, a bug in the callback handler could still be exploited by an attacker as
we lose vital information on executed paths. To overcome this problem, we apply
another round of dynamic instrumentation, this time to ensure that whenever a call-
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back is invoked, LBR tracking is enabled again. We discuss this process in more
detail below.

The dynamic instrumentation module of the initialization component performs
necessary rewriting tasks at load time (when dynamically linked libraries are avail-
able) and at runtime (every time a new shared library is dynamically loaded into
memory). Note that we only need to instrument shared libraries. No instrumentation
is required in the protected application, leaving the original binary intact.

4.3.3.3 Callbacks

As mentioned above, a second dynamic instrumentation round is required in order
to re-enable branch recording when a library function invokes a callback that lies
in the program’s binary (e.g., qsort()). Instrumenting callback sites is done by
looping over all shared library functions and searching for indirect call instructions.
For each indirect call, we insert a short instrumentation snippet that (1) tests if the
target of the indirect call lies in the protected program’s address space, and (2) if this
is the case, wraps the call instruction between two ioctl() system calls that notify
the kernel module that a callback function is entered or exited (CALLBACK_ENTER
and CALLBACK_EXIT, respectively).

When the kernel module receives a CALLBACK_ENTER request, it pushes the
current LBR state (i.e., the contents of the LBR registers as seen before the library
function that performs the callback) to an internal stack of LBR contexts. When
the callback exits (CALLBACK_EXIT), the kernel module pops the top of this LBR
stack back into the actual registers. To support code that forks within a callback, the
kernel module copies the stack of LBR contexts to the newly created process, so that
parent and child both receive consistent branch records.

Observe that signals are essentially a specialized form of callbacks and can be
processed in a similar manner. The only difference is that instead of instrumenting
code, we install a hook on the kernel’s signal delivery function. This hook executes
before control returns to the signal handler, allowing us to save the current LBR
context so that it can be restored upon the sigreturn system call.

Our approach of switching LBR contexts at the moment callback handlers are
invoked could potentially allow an attacker to install a different handler than nor-
mally enforced by the CFG. Consider the case where an attacker exploits a memory
corruption bug to install a callback handler that fits his needs. Without additional
security measures, this operation may go unnoticed (control-flow diversion happens
indirectly in the kernel or in the libraries).

To overcome this situation, PathArmor considers signal handler registration and
LBR management operations (i.e., push context, pop context) to be sensitive oper-
ations themselves (thus triggering LBR validation). Moreover, PathArmor always
copies the last branch entry during LBR context switching, storing it as the first
branch entry for the new context. This enables our on-demand static analysis to ap-
ply our indirect edge resolution policies on the library-originated indirect call edge
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before allowing the callback. A symmetric approach is used to avoid false positives
for library-originated function pointers (e.g., returned by dlsym()) which are used
for indirect call invocations by the program. Our static analyzer resolves the library
target referred to by the function pointer in a dedicated way without needing more
sophisticated modular CFI policies [132].

4.3.3.4 Special Constructs

Similarly to our callback support, PathArmor supports the longjmp() construct by
implementing a special handler for this in the kernel module: for each setjmp(),
the kernel stores the existing LBR contents along with the provided env argument.
Upon a longjmp(), our module verifies the LBR contents, flushes them and re-
stores the LBR with the appropriate state stored earlier (matching env). As with call-
backs, we use our dynamic instrumentation component to insert dedicated SETJMP
and LONGJMP ioctl() requests for each such construct.

4.4 Implementation

We implemented PathArmor on Linux v3.13 for x86-64 with support for multipro-
cess and multithreaded applications. Our kernel module is implemented as a stan-
dard loadable module for the Linux kernel in 1,752 SLOC. The on-demand static
analysis component is implemented as a plugin for the Dyninst binary analysis and
rewriting framework [31] in 6,741 SLOC overall. The library instrumentation is
implemented as another Dyninst plugin in 1,625 SLOC.

To intercept sensitive system calls, we install an alternative syscall handler by
overwriting the MSR_LSTAR register. PathArmor forwards most system calls di-
rectly to their vanilla implementation, imposing little to zero extra overhead. How-
ever, we consider a total of seven system call families to be dangerous, and start ver-
ification whenever these are encountered: mprotect and the mmap family (which
can be used to disable DEP/W⊕X), and the exec family (which can be used to start
a malicious command) are obvious choices and have been considered in prior work
in the area [56]. To address the challenges related to signal handling as detailed in
Section 4.3.3.3, PathArmor also intercepts the sigaction and sigreturn sys-
tem calls. PathArmor can also be configured to protect I/O system calls, to prevent
attacks like data leaks and script injection in (for instance) web servers.

Since Linux v3.13 does not support per-task LBR context management, we im-
plemented it to avoid pollution from other processes. We used the standard pre-
empt notifier functionality (preempt_notifier_register) provided by the
Linux kernel to install hooks on context-switches. During a context-switch-out
(sched_out), PathArmor stores the LBR state of the current process into an LBR
process table, to restore it later when the thread is scheduled in again (sched_in).
This approach allows PathArmor to support binaries that use multithreading.
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Our current PathArmor prototype is based on the Dyninst binary rewriting frame-
work, and as a consequence does not support C++ exceptions. This limitation is not
fundamental to PathArmor, and can be addressed in future work with additional
engineering effort.

4.5 Evaluation

We evaluate PathArmor on a workstation equipped with a 3.10GHz Intel i5-2400
CPU and 8GB of RAM, running Ubuntu 14.04 with Linux kernel 3.13 (x86-64). To
measure the worst case performance impact of PathArmor, we default to non-library
mode, but we evaluate the effects of enabling in-library tracking in Section 4.5.5.

We evaluate PathArmor on several popular Linux server applications. These are
widely used in the research community for evaluation purposes, and are also popular
exploitation targets for both local and remote attacks. Moreover, they naturally con-
tain a relevant number of security-sensitive functions and can greatly benefit from the
protection guarantees provided by PathArmor. Our server test suite consists of three
FTP servers (vsftpd v1.1.0, proftpd v1.3.3, and pure-ftpd v1.0.36), two
web servers (nginx v0.8.54 and lighttpd v1.4.28), an SSH server (opensshd
v3.5), and an email server (exim v4.69). We also evaluate PathArmor’s perfor-
mance on SPEC CPU2006.

To benchmark our web servers, we used the Apache benchmark [1] configured to
issue 25,000 requests with 10 concurrent connections and 10 requests per connection.
To benchmark our FTP servers, we used pyftpbench [5] configured to open 100
connections and request 100 files of 1KB each per connection. Finally, to benchmark
opensshd and exim, we used the OpenSSH test suite [4] and a homegrown script
which repeatedly launches sendemail [7], respectively. We configured all our
applications and benchmarks with their default settings. We ran all our experiments
11 times, checking that the CPUs were fully loaded throughout our tests, and report
the median. We observed only marginal variations across runs.

Our evaluation answers four key questions: (1) Security: Does PathArmor signif-
icantly improve security against control-flow diversion attacks compared to existing
CFI techniques? (2) Memory usage: How much memory overhead does PathArmor

induce? (3) Analysis time: Does PathArmor’s static analysis complete in reasonable
time? (4) Runtime performance: Does PathArmor yield low runtime overhead while
protecting a relevant set of sensitive functions?

4.5.1 Security

To evaluate the security guarantees of PathArmor and, in particular, the improve-
ments in CCFI over existing CCFI techniques, we measured the strength of the CFI
invariants extracted by our static analysis and enforced by PathArmor at runtime. For
this purpose, we instructed our static analyzer to generate CFI statistics during the ex-
ecution of our benchmarks and compare the results against fully context-insensitive



4.5. EVALUATION 59

C
h
a
p
te

r
4

CFG LBR (Avg)

Functions |V | |E|
|EIB|

|E|

|EIF|
|E|

|EDF|
|E|

vsftpd sa,mm,mp 4,052 9,269 0.33 0.23 0.44
proftpd sa,sg,ki,mm 29,682 210,489 0.38 0.27 0.35
pure-ftpd sa, 5,702 19,910 0.32 0.33 0.35
lighttpd sa,sg,ki,m4,el 7,380 38,006 0.38 0.22 0.40
nginx sa,ra,ki,m4,ee 26,029 432,829 0.45 0.20 0.35
opensshd sa,sg,mm,el,ev,ee 14,749 63,644 0.38 0.26 0.36
exim sa,sg,ki,ev,ee 37,906 167,867 0.34 0.28 0.38

Table 4.1: Control flow properties of the evaluated programs. The Functions column shows the

sensitive functions which require protection: sa=sigaction, sg=signal, ra=raise, ki=kill,

mm=mmap, m4=mmap64, mp=mprotect, el=execl, ev=execv, ee=execve. The CFG

group shows the number of nodes and edges in the CFG. The LBR group shows the average

number of indirect backward edges, indirect forward edges, and direct forward edges in the LBR

during execution of our tests.

CFI policies. Note that these statistics are intended only to provide a clear picture of
the strength of PathArmor’s invariants compared to other CFI solutions. As such, the
following discussion focuses on a relative comparison across CFI implementations,
rather than on absolute numbers.

Tables 4.1 and 4.2 present the resulting statistics. Table 4.1 quantifies the control
flow properties of the evaluated binaries, showing their sensitive functions, inter-
procedural CFG information, and prevalence of each edge type in the LBR during
execution. The ICFG information is generated by our analyzer with fully context-
insensitive indirect edge resolution policies. The LBR statistics show the fraction of
indirect backward edges (IB), indirect forward edges (IF), and direct forward edges
(DF) in the LBR averaged across all the sensitive function calls during execution
of our benchmarks. Table 4.2 compares the control flows permitted by PathArmor

(CCFI) to existing coarse-grained CCFI and fine-grained CCFI techniques.

As shown in Table 4.1, the number of sensitive functions as well as the number of
nodes and edges in the CFG (|V | and |E|, respectively) varies greatly across applica-
tions, reflecting their different internal structure. Moreover, the overall distribution
of edge types in the LBR is relatively stable across applications, with backward
edges dominating (indirect) forward edges (37% vs. 25% geometric mean). Encour-
agingly, direct forward edges (which, while necessary to scalably enforce our CCFI
policies, also decrease the number of LBR entries subject to CFI enforcement) have
a significant but non-dominant impact in practice (37% geometric mean).

In Table 4.2, the |G| columns report the average number of targets (and thus gad-
gets) allowed by the given CFI policy for each indirect edge observed in the LBR.
The min[GLen] column provides more qualitative information on the resulting CFI-
allowed gadgets, by averaging the minimum allowed gadget length for each edge
observed in the LBR. As shown in the table, CCFI yields a significantly lower aver-
age number of gadgets compared to coarse-grained and fine-grained CCFI (−99.7%
and −61.6% geometric mean, respectively).
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CCFIcg (Avg) CCFIfg (Avg) CCFI (Avg)

|G| min[GLen] |G| min[GLen] |G| min[GLen]

vsftpd 543.26 3.5 3.17 8.0 1.27 13.1
proftpd 3249.55 2.2 19.96 4.0 6.11 7.5
pure-ftpd 403.57 2.2 5.37 4.5 1.94 5.1
lighttpd 561.00 2.0 2.77 4.8 1.00 5.5
nginx 1482.08 2.8 23.40 9.3 14.90 9.9
opensshd 1725.20 2.1 16.02 3.9 4.37 7.2
exim 2588.53 2.2 25.10 4.4 11.05 11.1

Table 4.2: Comparison of permitted control flows in coarse-grained, fine-grained, and context-

sensitive CFI (average number of legal targets and minimum gadget length).

Additionally, Figure 4.2 shows the CDF of the number of allowed targets for the
two applications with the most sensitive calls (exim and proftpd). We observe
similar trends for the other applications. The CDF confirms that CCFI allows very
few targets for the vast majority of control flow transfers. For instance, on exim,
98% of control transfers have less than 13 legal targets, compared to around 86%
for fine-grained CCFI and 72% for coarse-grained CCFI (the common policy for
binary-level CFI solutions [197; 199]). This demonstrates the effectiveness of our
context-sensitive CFI policies, which can drastically restrict the number of legal
targets for most LBR entries.

Our improvements are also reflected in the overall complexity of the gadgets
left to the attacker, with the average minimum allowed gadget length (min[GLen])
substantially increasing compared to the coarse-grained and fine-grained versions of
CCFI (+245% and +53% geometric mean, respectively). In general, shorter gadgets
are easier to fit together and are more preferred than longer gadgets for building a
ROP chain. By reducing the possible indirect edge targets, the attacker’s gadget
arsenal is diminished and the bar for exploitation raised.

As an example, Table 4.2 shows that the reduction in the average number of in-
direct edge targets from 17 to 2.3 for exim results in an increase of the average
number of instructions in the shortest allowed gadgets from 4.4 to 11. With CCFI,
a deeper gadget analysis also reveals a significant increase in the average number
of register accesses in the shortest allowed gadgets compared to the coarse-grained
and fine-grained CCFI policies. The geometric mean register access counts for the
coarse-grained CCFI, fine-grained CCFI and CCFI policies are 1.3, 4.5 and 7.7, re-
spectively. This confirms the increased gadget complexity under CCFI policies.

To evaluate the effectiveness of the particular CCFI techniques implemented in
PathArmor, we also examine the impact of context sensitivity on both the forward
and backward edge in more detail. For this purpose, we first compare our (static)
backward-edge CCFI policy to that enforced by a (dynamic) shadow stack, the
only known (runtime) solution which mimics context-sensitive control-flow policies
(though only on the backward edge, and using tamper-prone and more heavyweight
instrumentation at the binary level). For a fair comparison, we focus our measure-
ments on the fraction of backward edges observed in the LBR which are restricted
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Figure 4.2: CDF of gadgets permitted by CCFI and CCFI for exim and proftpd.

to only one target (in a fully context-sensitive fashion) by our CCFI techniques. We
also use Intel’s BTS feature to simulate an LBR of arbitrary size, overcoming the
restrictions imposed by commodity hardware.

Figure 4.3 presents our results for increasing LBR sizes and the two applications
with the most sensitive calls (exim and proftpd). We observe similar trends for
the other applications. On commodity hardware (16 LBR entries), PathArmor can
enforce a single target for nearly 75% of the backward edges observed in the LBR. In
the remaining cases, the limited LBR size causes PathArmor to lose program context
and resort to CCFI policies. While the current LBR size limit prevents PathArmor

from fully reaching the ideal shadow stack performance (100%), these results are
still encouraging given the small default LBR size. In addition, Figure 4.3 shows
that future hardware extensions can help fill the gap, e.g., enforcing a single target
in 90% of cases with 70 LBR entries.

To evaluate the effectiveness of our forward-edge CCFI policy, we examine the
reduction in the number of allowed indirect call targets caused by context sensi-
tivity. Due to the very limited number of indirect call entries in the LBR for our
test programs (which rarely use indirect calls close to sensitive function points), we
did not observe any significant reduction in our experiments. Therefore, to gener-
alize our results and eliminate any application-specific bias, we applied our policy
to all the code paths (rather than just those seen at runtime). This still results in
a relatively small reduction overall (less than 5% in most cases). However, this
is expected, given that our current binary-level forward-edge CCFI policy is very
simple (only propagating function pointers passed in call arguments in a straight-
forward way), and only intended to demonstrate the practicality of implementing
arbitrary forward-edge CCFI policies in PathArmor. To examine the potential for
more sophisticated forward-edge CCFI policies, we approximated an ideal binary-
level context-sensitive forward-edge analysis using higher-level language semantics,
implemented on top of LLVM 2.9 Data Structure Analysis (DSA) [113].
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Figure 4.3: Fraction of single-target backward edges for CCFI when simulating an increasingly

large LBR (exim and proftpd).

Table 4.3 shows the effect of the resulting forward-edge CCFI policy on our set
of server programs. The policy causes a significant geometric mean reduction of
22% in the average number of indirect call targets. The reduction varies depending
on the context-sensitive function pointer resolution accuracy. For vsftpd, we ob-
tain a reduction of 62%, while numbers decrease for applications with more complex
pointer resolutions. We believe these results are encouraging, simulating research on
more sophisticated forward-edge CCFI policies for which PathArmor can serve as a
basis. Moreover, DSA’s flow-insensitive and unification-based design aggressively
merges data-flow information, improving speed but also resulting in overly conser-
vative results [113]. In addition, due to implementation limitations, DSA is known
to produce even more conservative, and thus pessimistic, results on modern LLVM
releases [2]. Thus, an updated version of DSA (or a more precise, but also less
scalable analysis) would likely yield substantially improved forward-edge results.

Overall, our analysis shows that CCFI is effective in generating robust CFI in-
variants to defend against even sophisticated control-flow diversion attacks. While
attacks are still theoretically possible (and they might be even for an ideal CCFI solu-
tion), the adoption of context sensitivity significantly limits the quantity and quality
of gadgets available to the attacker. This is in stark contrast, for example, with unre-
strictedly allowing simple call-site gadgets, which have been used to mount attacks
against prior CCFI techniques [97].

4.5.2 Memory Usage

PathArmor instrumentation must inherently keep track of analyzed paths and meta-
data for verifying the validity of paths. Thus, it increases memory usage at runtime.
To evaluate this impact, we measured the physical memory used by instrumented
applications compared to the baseline. Deploying our kernel module alone has a
constant and marginal memory usage impact (+1MB). Our static analyzer, in turn,
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#icalls
targetscs
targetsci

vsftpd 6 0.38
proftpd 120 0.99
pure-ftpd 11 1.00
lighttpd 66 0.84
nginx 271 0.82
opensshd 131 0.82
exim 99 0.89

geomean 56 0.78

Table 4.3: Fraction of legal indirect targets for (ideal binary-level) context-sensitive versus context-

insensitive forward-edge CFI.

yields a memory usage impact proportional to the size of the CFGs under active
analysis, resulting in an increase of +18–74MB across all our applications.

More important is to assess the memory usage impact of our path caching strat-
egy, given that caching static analysis results is important to minimize the perfor-
mance impact on instrumented applications. Encouragingly, our measurements in-
dicate a very small memory usage impact induced by our in-kernel path cache, re-
sulting in a worst-case increase of only 2KB across all our applications during the
execution of our benchmarks. This suggests that our path caching strategy is practi-
cal even for applications which periodically issue several different sensitive function
calls, and even provides evidence that deploying a system-wide path cache that per-
sists across application restarts (thus eliminating cache warmup-phase penalties for
applications with strong real-time guarantees) may be a realistic option.

4.5.3 Analysis Time

PathArmor’s on-demand path analysis translates to increased application runtime.
To evaluate the resulting impact, we measured the time spent in our analyzer during
the execution of our benchmarks. Table 4.4 presents our results.

The second group of columns details the total and average analysis time mea-
sured across all the paths analyzed. As shown in the table, the average time spent in
our analyzer to inspect each path is relatively low (3ms geometric mean, with only
marginal variations). This demonstrates that our optimizations (pre-normalizing the
CFG and recording direct forward edges in the LBR) are effective in implementing
a scalable context-sensitive path analysis even for large and complex CFGs.

In addition, the total time spent in our analyzer is marginal compared to the total
benchmark runtime (49ms geometric mean versus several seconds). This shows the
effectiveness of our path cache which, as reported in Table 4.4, was consulted thou-
sands of times with only dozens of misses for most applications. We elaborate on the
end-to-end impact of our on-demand path analysis strategy on runtime performance
in the next section.
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Time (ms) Cache Stats

Server Total Avg # Misses # Hits

vsftpd 24 3 9 2,283
proftpd 140 4 39 2,495
pure-ftpd 56 2 27 1,915
lighttpd 28 2 13 2
nginx 24 5 5 10
opensshd 52 2 22 49
exim 100 3 40 1,871

geomean 49 3 18 213

Table 4.4: Path analysis time and runtime cache statistics.

4.5.4 Runtime Performance

To evaluate the impact of PathArmor’s instrumentation and path verification strate-
gies on runtime performance, we measure the time to complete the execution of
our benchmarks and compare against the baseline. Table 4.5 presents our results.
The second group of columns details the normalized runtime across a number of
PathArmor configurations. The LBR only configuration refers to PathArmor solely
deploying its kernel module and saving/restoring the current LBR state at applica-
tion thread context switch time. As shown in the table, this configuration introduces
marginal performance impact (2.5% geometric mean). The overhead is somewhat
more pronounced in the +LInstr and +CBInstr configurations (6.6% and 6.7% geo-
metric mean), which additively account for our library entry point and callback in-
strumentation, respectively, but omit the path verification step in our kernel module.
The +PathVer configuration, finally, refers to the default PathArmor setup, enabling
full instrumentation and path verification using our on-demand static analyzer. As
shown in the table, our cache-aware path analysis has relatively little impact on run-
time performance (+1.7% geometric mean), resulting in the final average runtime
overhead of 8.5% (geometric mean).

To shed some light on the key factors contributing to the performance overhead,
we also instructed PathArmor to report statistics on the runtime events of interest, as
shown in the third group of columns in Table 4.5. Our results confirm that library
calls (#LCalls) are the most prevalent contributing factors in the mean case, also
inducing the worst-case performance impact on lighttpd (27.3%). More aggres-
sively instrumented operations like callback invocations (marginal, not reported in
table), sensitive function calls (#SCalls) and signals (#Signals) have a less promi-
nent impact and can thus be better amortized over the execution.

To obtain standard and comparable performance results across PathArmor’s con-
figurations, we also measured the time to complete all the C programs in the SPEC
CPU2006 benchmarks and compared against the baseline. Figure 4.4 presents our
findings. Our results confirm the general behavior observed for our server applica-
tions, but the performance overhead is generally much lower (3% in PathArmor’s
default configuration, geometric mean). This result stems from the lower number of
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Normalized Runtime Event Stats

Server LBR only + LInstr + CBInstr + PathVer # LCalls # SCalls # Signals

vsftpd 1.000 1.000 1.000 1.000 35,883 42,446 208
proftpd 1.000 1.000 1.000 1.000 171,440 48,562 6
pure-ftpd 1.003 1.053 1.031 1.074 115,897 57,843 64
lighttpd 1.097 1.236 1.226 1.275 1,209,081 200,564 0
nginx 1.053 1.178 1.168 1.174 1,500,021 200,002 0
opensshd 1.003 1.003 1.031 1.020 24,313 720 8
exim 1.025 1.019 1.036 1.079 67,849 4,149 50

geomean 1.025 1.066 1.067 1.085 154,831 28,229 12

Table 4.5: Runtime normalized against the baseline and statistics gathered during the execution of

our benchmarks.

library and system calls issued by SPEC programs, as expected for standard CPU-
intensive (as opposed to syscall-intensive) benchmarks.

Overall, PathArmor imposes a relatively low runtime performance impact on all
the test programs considered. This confirms that PathArmor’s lightweight instrumen-
tation and cache-aware path analysis are successful in producing a runtime overhead
comparable to the most efficient (source-level and forward-edge only) CCFI tech-
niques [177], while enforcing much more advanced context-sensitive CFI policies
on both the forward and backward edge and operating entirely at the binary level.

4.5.5 LBR Pollution

As discussed in Section 4.3, PathArmor supports two modes of operation: (1) stop
tracking branches at the library boundary, or (2) continue tracking within libraries.
The current implementation of PathArmor uses the first mode by default, effectively
increasing the control flow context of the protected binary during path verification.
To also protect against control flow diversion triggered within library code, PathAr-

mor can be configured with the second mode of operation. When running in this
mode, branch tracking is never disabled at the cost of (partially) “polluting” the
LBR from (self-contained) library code.

To evaluate the LBR pollution cost of running in full-library mode, we config-
ure PathArmor to compare LBR contents right before and right after each library
call and rerun the SPEC CPU2006 benchmarks. Table 4.6 shows the results. The
average pollution rate of 25.68% overall (geometric mean) is likely acceptable in
environments where untrusted, potentially vulnerable libraries are in place.

Tracking inside libraries leads to better performance, as this removes the jump to
kernel during application-library transitions. Thus, as mentioned earlier, the results
provided in our evaluation show worst-case performance. As discussed above, the
tradeoff of in-library tracking is increased LBR pollution. However, this can be
mitigated with complementary techniques, such as inlining library code or using
hardware that provides a larger branch record.
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Figure 4.4: Runtime normalized against the baseline for SPEC CPU2006.

4.6 Discussion

This chapter has described context-sensitive CFI, and evaluated the design decisions
made in PathArmor, our CCFI implementation. We now discuss evasion techniques
an attacker may employ to bypass PathArmor, analyzing their impact, potential mit-
igations, and the limitations of our current solution.

4.6.1 History Flushing Attacks

An attacker may attempt to mount a history flushing attack to clear any traces of a
ROP chain from the LBR. History-flushing attacks previously described in the liter-
ature first execute 16 innocuous NOP-like gadgets followed by a long termination

gadget that restores argument registers and ultimately performs a security-sensitive
system call [49]. The long termination gadget bypasses heuristics used in prior LBR-
based solutions such as kBouncer [136] and ROPecker [56], which rely on weak
security invariants based on gadget size (which they assume to be small) and gadget
invocation frequency.

PathArmor is not vulnerable to this simple attack, as history flushing in PathAr-

mor would require an attacker to craft a valid CCFI-permitted path of 16 NOP-like
gadgets (using direct calls or indirect branches). This is much more difficult than
chaining arbitrary and CFG-agnostic gadgets. In other words, the notion of a path
in PathArmor is stronger than that of regular (context-insensitive) CFI and much
stronger than that of kBouncer and ROPecker. Hence, while history flushing attacks
generally remain of concern, PathArmor’s stronger invariants significantly raise the
bar for the attacker.

For example, we have shown in Section 4.5.1 that it is generally much harder to
maintain register states over the many branches required in history flushing attacks.
This makes it very difficult for an attacker to setup arguments for calling a sensi-
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#libcalls #polluted %polluted

gcc 3,373,862 13,086,146 24.24
bzip2 449 1,284 17.87
perlbench 60,495,412 253,246,721 26.16
mcf 470,597 5,705,524 75.78
milc 28,807,387 65,657,612 14.24
gobmk 299,877 1,004,581 20.94
hmmer 4,098,071 18,395,790 28.06
sjeng 11,602 176,683 95.18
libquantum 52,609,059 105,222,996 12.50
h264ref 2,449,569 12,515,117 31.93
lbm 2,626,460 5,263,308 12.52
sphinx3 48,625,654 187,711,907 24.13

geomean 1,604,689 6,595,149 25.68

Table 4.6: LBR pollution caused by library calls for SPEC CPU2006. #libcalls: overall library calls,

#polluted: overall polluted LBR entries, %polluted: percentage of LBR entries polluted (average).

tive function, and then maintain these arguments throughout the process of flushing
history preceding the eventual sensitive call.

A related potential attack is to force context switches in order to clear the LBR
and thereby indirectly mount a history flushing attack. Like other history flushing
attacks, this attack strategy is also ineffective against PathArmor. This is because,
as outlined in Section 4.4, PathArmor stores and restores LBR states during context
switches on a per-thread basis.

4.6.2 Non-control Data Attacks

An attacker may attempt to mount a non-control data attack to indirectly influence
the execution of existing security-sensitive functions in the program without directly
diverting control flow. For example, an attacker can exploit an arbitrary memory
write vulnerability to overwrite sensitive function arguments that are maintained in
a data region.

Similarly to all the existing (and even ideal) CFI solutions, PathArmor cannot
protect against these and other data-only attacks. Unlike existing whole-program
CFI solutions, however, PathArmor’s history-based strategy would also allow an at-
tacker to craft a ROP-based memory write primitive before jumping to the beginning
of a valid execution path leading to a security-sensitive function. Nevertheless, since
ROP is not necessary to perform an attacker-controlled memory write and arbitrary
memory write vulnerabilities are actually very common, we do not believe this is
a limiting factor within our threat model. We also note that binary-level defenses
against non-control data attacks are explored in orthogonal work [168].

4.6.3 Endpoint-pruning Attacks

An attacker may attempt to evade detection by avoiding calls to sensitive endpoints
recognized by PathArmor. This is because, similarly to prior endpoint-driven solu-
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tions [56; 136], PathArmor enforces security invariants only at predetermined sen-
sitive function calls. Assuming PathArmor’s default configuration, such endpoint-

pruning attacks require the attacker to find alternative means to affect the system
environment without relying on system calls such as exec, and mprotect.

While this is generally of concern depending on the goals of the attacker, PathAr-

mor allows users to configure the list of sensitive endpoints according to their needs.
For programs in which our default configuration is not sufficient to provide the re-
quired guarantees, users can custom-tune the list of endpoints and balance security
and runtime performance.

Nevertheless, we believe that PathArmor’s default configuration alone drastically
reduces the freedom of an attacker. Although ROP may still be used to perform
arbitrary Turing-complete computations within an exploited application’s own state
space, without the ability to execute core security-sensitive system calls the impact
on the system remains limited.

4.6.4 Instrumentation-tampering Attacks

An attacker may attempt to abuse the instrumentation employed in PathArmor’s de-
fault mode of operation (which disables branch tracking in library code) to alter the
branch record. However, such attacks fail to circumvent PathArmor’s detection strat-
egy. Consider the scenario wherein an attacker sets up a ROP chain that invokes the
ioctl system call with a dedicated PathArmor-specific argument to tamper with
the branch-tracking instrumentation. Depending on the request type, this attack will
result in two possible outcomes.

In the case of a CALLBACK_EXIT request, PathArmor’s kernel module will
immediately verify the current LBR state (see Section 4.3.3.3) and detect CCFI in-
variant violations caused by the originating ROP-based control flow.

In the case of a LIB_ENTER request, in turn, PathArmor’s kernel module will
immediately return control to userland after disabling branch tracking, allowing the
attack to resume in LBR-free execution. However, as soon as the attacker invokes a
security-sensitive function, PathArmor’s kernel module will perform verification as
normal. At that point, the LBR state will still reflect the branch record generated by
the attacker’s original ROP chain (leading to the previously issued ioctl system
call), resulting, again, in PathArmor detecting the attack.

Note that an attacker can also attempt to later re-enable branch tracking via a
LIB_EXIT operation, but a PathArmor-legal path of 16 indirect branches is then
required to clear any traces of the original ROP attack. This is essentially equivalent
to the history flushing attack discussed earlier.

4.7 Related Work

CFI was originally proposed by Abadi et al. [15]. The original (strict) CFI proposal
incurs high overheads. This has lead to a myriad of proposals for practical CFI im-
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plementations which realize better performance by strategically trading off security
guarantees. There are two broad branches of CFI implementations: (1) Control-Flow
Graph-based (CFG-based) CFI, and (2) Heuristic-based CFI.

CFG-based CFI focuses on enforcing properties of the CFG. Compiler-based
approaches inherently require source to resolve (indirect) control transfers that are
considered legitimate [15; 18; 35; 67; 85; 131; 187; 195]. Due to the availability
of source information, these approaches are usually able to derive accurate CFGs.
Binary-based approaches, while potentially less accurate (for instance, based on an
overapproximated CFG), have the advantage of being applicable to legacy programs
where the source code is not available [107; 190; 197; 198; 199]. Recently, mod-
ular CFI approaches have also been proposed. These are a variant of CFG-based
approaches, which resolve part of the CFG at runtime, providing greater flexibility
for dynamically computed targets (such as JIT-compiled code) [132; 133; 138].

In contrast to CFG-based CFI, heuristic-based CFI does not require a CFG to
enforce integrity, and is typically agnostic of the specific protected binary. Such ap-
proaches include kBouncer [136] and ROPecker [56], which seek to detect anoma-
lous control patterns at sensitive program points. Such approaches are easy to deploy,
but are also relatively easy to circumvent, using attack patterns not captured in their
heuristics (such as long NOP-like gadgets) [97].

Prior work explored devastating attacks against both CFG-based and heuristic-
based CFI, using malicious combinations of individually legal control transfers [49;
76; 97]. PathArmor enables stronger defenses against such attacks by efficiently
enabling context-sensitive CFI policies over paths to sensitive functions and disal-
lowing many unnecessary forward and backward edges permitted by prior context-
insensitive CFI policies (such as backward edges to arbitrary call-site gadgets [97]).

In prior fine-grained CFI techniques, context-sensitive policies have been ex-
plored only for backward edges and only using shadow stacks [33; 54; 58; 61; 74;
85; 145; 152; 166; 194]. As we have seen in StackArmor, discussed in Chapter 3,
such approaches rely on strong memory randomization for their security guarantees.
More importantly, they are specifically designed to prevent backward edge attacks,
and cannot be extended to protect the forward edge.

In contrast to the runtime shadow stack approach, PathArmor resolves backward
edges using a hardware-supported context-sensitive static analysis over the interpro-
cedural CFG and caches the results at sensitive points in the program, yielding im-
proved performance and security against tampering attacks. Static context-sensitive
backward edge resolution strategies have been explored before for security, but only
to improve the accuracy of IDS models based on syscall sequences [184]. In con-
trast, PathArmor shows that enforcing context-sensitive CFG-based policies both on
the forward and backward edge at a much finer level of granularity (i.e., control-flow
transfers for CFI) is a realistic and efficient option thanks to emerging hardware fea-
tures. This result contrasts claims in prior work, which, while acknowledging their
security advantages, generally dismissed context-sensitive CFI policies as impracti-
cal for real-world adoption [15].



70 CHAPTER 4. PRACTICAL CONTEXT-SENSITIVE CFI

Some other approaches have used hardware-supported branch tracing to improve
CFI performance. Similar to PathArmor, kBouncer [136] and ROPecker [56] rely on
Intel’s LBR to efficiently implement branch tracing, but only to enforce heuristic CFI
policies (based on gadget length and gadget invocation patterns) which can be easily
circumvented [49]. CFIMon [190] can enforce hardware-supported CFG-based CFI
policies, but relies on the significantly slower Intel BTS [136] and yields high de-
tection latencies, potentially missing attacks [56]. Unlike PathArmor, none of these
approaches attempt to enforce context-sensitive policies over hardware-monitored
control transfers.

Recent work on Control-Flow Bending (CFB) evaluates the general effective-
ness of even ideal (context-insensitive) CFI solutions and evidences their limita-
tions against sophisticated CFG-aware attacks [48]. Compared to regular CFI, CCFI
makes such attacks harder, given that entire paths (rather than individual CFG edges)
are checked for validity. CFB attacks have already been shown to be more difficult
against CFI solutions that are complemented by a shadow stack [48]. Compared to
such solutions, CCFI does not rely on in-process runtime information and can en-
force context-sensitive invariants on both the forward and backward edges, thereby
providing improved defenses against CFB attacks.

Concurrently with our work, Schuster et. al. developed the COOP attack [157],
showing that CFI solutions which do not precisely consider object-oriented seman-
tics in C++ programs can generally be bypassed. While PathArmor as described in
this chapter mainly focuses on C rather than C++ programs, follow-up work (imple-
mented as part of a forward-edge CFI system called TypeArmor) shows that CCFI
can also strengthen forward-edge invariants for use in binary-level protection against
COOP-like attacks [181].

4.8 Conclusion

Since the original CFI paper by Abadi et al. [15], it has been known that Context-
sensitive CFI (CCFI) can significantly enhance the security of defenses against state-
of-the-art control-flow diversion attacks. Despite this knowledge, CCFI has thus
far received little attention in the literature because it was perceived as inefficient
and impractical for real-world adoption due to prohibitive overhead. This chapter
has shown that the three fundamental challenges towards fast and practical CCFI—
efficient path monitoring, analysis, and verification—can indeed be effectively ad-
dressed in a realistic way on modern commodity platforms.

To substantiate our claims, we implemented PathArmor, the first binary-level
CCFI solution that efficiently enforces context-sensitive CFI policies on both the
backward and forward edges. PathArmor addresses all the fundamental CCFI chal-
lenges using low-overhead hardware registers to track control flow edges, a scalable
on-demand and constraint-driven context-sensitive static analysis, and a path cache
verified at sensitive program points.
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PathArmor yields comparable or better performance than prior context-insensitive
CFI solutions, while enforcing much stronger context-sensitive security invariants.
Moreover, PathArmor provides a general framework which can be used as a basis
for implementing arbitrarily sophisticated CCFI policies.
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Chapter 5

Parallax: Implicit Binary Code

Integrity Verification Using

Return-Oriented Programming

Parallax is a novel self-contained code integrity verification approach, that protects
instructions by overlapping Return-Oriented Programming (ROP) gadgets with them.
Our technique implicitly verifies integrity by translating selected code (verification

code) into ROP code which uses gadgets scattered over the binary. Tampering with
the protected instructions destroys the gadgets they contain, so that the verification
code fails, thereby preventing the adversary from using the modified binary. Un-
like prior solutions, Parallax does not rely on code checksumming, so it is not vul-
nerable to instruction cache modification attacks which affect checksumming tech-
niques. Further, unlike previous algorithms which withstand such attacks, Parallax

does not compute hashes of the execution state, and can thus protect code with non-
deterministic state. Parallax limits performance overhead to the verification code,
while the protected code executes at its normal speed. This allows us to protect
performance-critical code, and confine the slowdown to other code regions. Our ex-
periments show that Parallax can protect up to 90% of code bytes, including most
control flow instructions, with a performance overhead of under 4%.

5.1 Introduction

Code integrity verification (tamperproofing) aims to ensure that code executes as
intended on a hostile host [189], without modification by an adversary. Self-verifying

code implements such integrity checks without requiring specialized hardware (such
as trusted execution modules) or remote verification servers.

Code protection primitives like integrity verification are widely used in practice
to delay reverse engineering attacks, and to deter non-persistent adversaries. Code

73
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protection is commonly used by malware to prolong its lifespan and monetization
period [38; 153; 154], but it is also used to protect benign programs against reverse
engineering [34]. Furthermore, code integrity verification in particular can also de-
fend against certain parasitic malware techniques, which inject inline hooks or code
into processes [192] or executables [174].

Recently, the American Institute of Aeronautics and Astronautics launched a
code protection initiative to prevent attacks against aviation control systems [11].
The United States Department of Defense has also expressed interest in code protec-
tion for use in hardened computing centers, as well as real-time software [180].

Code integrity verification also finds applications in Internet-of-Things (IoT) de-
vices. These are inexpensive devices deployed in the physical world on a massive
scale, making them very sensitive to tampering by adversarial users [28; 175]. As de-
scribed below, our proposed technique is highly suitable for protecting IoT devices,
due to its ability to flexibly tune performance overhead so that it does not affect the
critical execution path.

Most existing code self-verification algorithms work by computing checksums
over protected code regions, and verifying that these checksums are as expected. Us-
ing several cross-verifying checksummed code regions, such algorithms can provide
fairly strong tamperproofing. Unfortunately, Wurster et al. have shown that all such
algorithms are inherently vulnerable to automated attacks which exploit the distinct
handling of code and data in modern processors [189]. Wurster et al. implement a
kernel patch which allows attackers to freely tamper with the code in the processor’s
instruction cache, while leaving the data cache entirely untouched. This completely
circumvents checksumming algorithms, as these treat code as data, thus fetching it
from the data cache instead of the instruction cache.

The foremost code verification technique designed to defeat this attack is obliv-

ious hashing (OH) [55; 102]. Instead of directly checking code integrity, oblivi-
ous hashing intersperses hashing instructions with the protected code, which build
runtime hashes of the execution state. The integrity is then verified by checking
that the computed hashes correspond to known correct values. However, this tech-
nique can only verify deterministic execution state, of which the expected hash is
known at compile time. This means that OH cannot protect code which involves
non-deterministic inputs, such as environment parameters or user input. Addition-
ally, the hashes used to verify the state are found using dynamic testing, limiting the
protection to code paths exercised in these tests.

We propose a novel code self-verification approach, which is based on Return-

Oriented Programming (ROP). ROP was originally proposed as an exploitation tech-
nique which allows arbitrary code execution in the presence of W⊕X [163]. ROP
uses short return-terminated instruction sequences, called gadgets, which are chained
together by arranging their addresses on the stack such that each terminating return
causes a control transfer to the next gadget. If a sufficient set of gadgets is available,
ROP is a Turing-complete programming technique which can implement arbitrary
computations on top of a host program. A Turing-complete gadget set exists in most
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programs [159]. We refer to an arrangement of gadget addresses into a ROP program
as a ROP chain.

Our code verification approach protects code by overlapping ROP gadgets with
it. Then, selected instructions from the protected program are translated into ROP
chains which use the overlapping gadgets. Since tampering with the gadgets causes
the translated instructions to malfunction, this implicitly verifies the integrity of the
protected code. Thus, we refer to these translated instructions as verification code.
Our notion of verification code can be seen as a generalization of code hiding tech-
niques based on function reuse [117]. We show in Section 5.6 that the verification
code is itself also tamper resistant.

Since the verification code uses ROP, it requires a set of gadgets overlapping with
the instructions we protect. We both use gadgets already present in the host binary,
and statically rewrite the binary to craft new ones. Since a Turing-complete gadget
set is already present in most programs [159], the additional tamperproofing gadgets
generally do not increase the vulnerability of protected programs to ROP attacks.

We implemented a prototype implementation of our technique for the x86 plat-
form, called Parallax. It uses binary rewriting to create protective gadgets, and builds
on ROP compiler functionality to generate verification code. Our proof of concept
provides the ability to use source to simplify binary rewriting, and also offers the
option of selecting verification code at the source level. However, this is not a re-
quirement of our technique, which can be implemented entirely at the binary level.

Contributions Our technique has several advantages over prior work.

• We do not use checksumming, thus preventing the attack of Wurster et al.

• In contrast to oblivious hashing, no prior knowledge of the runtime state is
required. Therefore, our technique can protect non-deterministic code regions.
Furthermore, we apply this protection statically, so it is oblivious to dynamic
code coverage.

• The overlapping gadgets do not slow down code they protect. Instead, perfor-
mance overhead is confined to the verification code using the gadgets. This
makes it possible to tamperproof performance-critical code while confining
the performance degradation elsewhere. In contrast, oblivious hashing slows
down protected code by interspersing hashing instructions with it.

• We show in Section 5.7 that our technique can protect up to 90% of code bytes
at a performance overhead of less than 4%. As argued in Section 5.8, non-
deterministic control flow decisions are among the most likely attack targets.
Thus, we protect crucial instructions which OH cannot [55].

• In contrast to prior work, including oblivious hashing, our approach lends it-
self to binary-level implementation, and does not rely on source. This enables
the protection of legacy binaries.
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esp
&g

1
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&g
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&g
n

pop eax

ret

add esi,eax

ret

Figure 5.1: An example ROP chain. Gadget g1 loads a constant into eax, which is then added to

esi by g2.

5.2 Background

This section describes Return-Oriented Programming, upon which we base our tech-
nique. We also describe the threat model which Parallax assumes.

5.2.1 Return-Oriented Programming

ROP was originally proposed in 2007 as an exploitation technique designed to cir-
cumvent memory protection mechanisms like W⊕X [163]. ROP traditionally makes
use of short instruction sequences found in a host program’s memory space, called
gadgets, each of which ends in a return instruction (more modern incarnations like
Jump-Oriented Programming also make use of gadgets ending in forward edge in-
structions [52]). Each gadget typically performs a basic operation, such as addition
or logical comparison. Gadgets can be part of the host program’s normal instruc-
tions, but can also be unaligned instruction sequences embedded within the normal
instruction stream. A ROP program consists of a chain of gadget addresses on the
stack, such that the return instruction terminating each gadget transfers control to the
next gadget in the chain.

Figure 5.1 illustrates an example ROP chain. Initially, the stack pointer (esp)
points to the address of the first gadget g1 in the chain. Upon execution of a return
instruction, control is transferred to this gadget. It performs a pop instruction, which
loads a constant arranged on the stack into the eax register, and increments esp to
point to gadget g2. Then, the ret instruction of gadget g1 transfers control to gadget
g2, which adds the constant in eax to the esi register. Gadget g2 then returns to
gadget g3, and so on, until all gadgets g1, . . . , gn have been executed.

5.2.2 Threat Model

Parallax assumes the hostile host threat model [189], which is the standard model
for tamperproofing techniques. It assumes that the tamperproofed application is exe-
cuted on a system controlled by a hostile user, which has full control over the runtime
environment, and may arbitrarily modify the tamperproofed executable itself. This
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Figure 5.2: A high-level overview of Parallax .

includes alterations made during runtime debugging, as well as static code patch-
ing. The intent of the hostile user is typically to circumvent access controls in the
protected application, such as anti-debugging checks or license verifications. The
challenge for our tamperproofing technique is thus to maximize the effort required
by the hostile user to successfully tamper with the protected application, without
assuming any trusted components in the runtime environment.

5.3 Parallax Overview

This section gives an overview of how Parallax implements protection against both
static and dynamic code modification. Figure 5.2 illustrates how Parallax protects a
given binary.

To protect a binary, we select one or more code fragments at the source or binary
level for use as verification code (step 1© in Figure 5.2). In Section 5.7.2, we describe
our strategy to do this automatically. Additionally, we determine a list of instructions
to protect. If source is available, these are selected at the statement or function level,
and then mapped to the binary level after compilation using debugging symbols. If
only a binary is available, protection is assigned at the instruction or function level.

Parallax begins by translating the selected verification code into one or more
ROP chains (sequences of ROP gadgets) 2©. These chains use placeholder gadget
addresses, since the final addresses are not yet known at this point. Eventually, these
placeholders will be replaced by gadget addresses in the protected code, so that ex-
ecuting the verification code implicitly verifies that the protected code is still intact.
Along with the ROP chains, Parallax inserts a loader routine to bootstrap them. Op-
tionally, the binary to protect is compiled from source if available.

Next, Parallax creates a collection of all gadgets available in the binary 3©. First,
any existing gadgets are added to the collection. Then, Parallax walks through the
list of instructions which were selected for protection. For every such instruction,
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Parallax examines if it can be augmented with an overlapping gadget. If so, it inserts
a gadget using binary rewriting, and adds this new gadget to the collection. The
gadgets are denoted as g1, . . . , g5 in Figure 5.2. We discuss our strategy for crafting
overlapping gadgets in Section 5.4.

Note that we do not require the inserted overlapping gadgets to form a Turing-
complete set, since most binaries already contain a Turing-complete gadget set by
default [159]. If not, a standard set of non-overlapping gadgets can be inserted into
the binary to augment the protective gadgets already inserted.

Finally, Parallax creates a gadget mapping which categorizes the available gad-
gets in the binary into a set of types; for instance, memory stores and register moves.
The gadget mapping is then used to recompile the verification code (using a ROP
compiler) such that it uses actual gadgets instead of placeholder addresses 4©. Dur-
ing compilation of the verification code, overlapping gadgets are always preferred
over non-overlapping gadgets. Tampering with the protected instructions modifies
the code bytes of the overlapping gadgets, thereby invalidating them. Such changes
are implicitly detected by the verification code, which malfunctions if the integrity
of the gadgets it uses is violated. We discuss the tampering and analysis resistance
of verification code in more detail in Sections 5.5 and 5.6.

5.4 Protecting Code Integrity

This section discusses the creation of ROP gadgets which overlap with existing code,
and protect the code integrity. As discussed in Section 5.3, these gadgets need not
form a Turing-complete set. Instead, the focus is on gadgets which have maximal
overlap with the protected instructions. The creation of verification code which uses
the gadgets is discussed in Section 5.5. We provide an example of gadget insertion
in Section 5.4.1, and generalize it in Section 5.4.2 by describing the rules which
Parallax uses to craft overlapping gadgets.

5.4.1 A Tamperproofed Ptrace Detector

We provide a running example of a ptrace detection function augmented with
overlapping gadgets. We compiled this function with gcc 4.6.3, and then used
Parallax to search for locations where overlapping gadgets could be inserted. In the
example, we manually chose which instructions to protect from the list of possible
locations. To avoid manual effort, it is also possible to input a list of functions to
protect, and rely on Parallax to overlap gadgets with as many instructions in these
functions as possible. Alternatively, if source is available, source-level statements
can be marked for protection, and mapped to instructions using debugging symbols.
The rules Parallax uses to create gadgets are discussed in Section 5.4.2.

Listing 5.1 shows a disassembly dump of our tamperproofed ptrace detector.
For clarity, we have shortened addresses such as 08048438 to n+38. We first de-
scribe the purpose of the ptrace detector, and then elaborate on how it is protected.
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n+38 <cleanup_and_exit>:

n+38: 55 push ebp

n+39: 89 e5 mov ebp,esp

n+3b: 83 ec 18 sub esp,24

n+3e: 89 04 24 mov [esp],eax

n+41: e8 d5 fe ff ff call exit@plt

n+46 <check_ptrace>:

n+46: 55 push ebp

n+47: 89 e5 mov ebp,esp

n+49: 83 ec 18 sub esp,24

n+4c: c7 44 24 0c 00 00 00 00 mov [esp+0xc],0

n+54: c7 44 24 08 00 00 00 00 mov [esp+0x8],0

n+5c: c7 44 24 04 00 00 00 00 mov [esp+0x4],0

n+64: c7 04 24 00 00 00 00 mov [esp],0

n+6b: e8 cb fe ff ff call ptrace@plt

n+70: 85 c0 test eax,eax

n+72: 79 07 jns n+7b

n+74: b8 01 00 00 00 mov eax,1

n+79: eb bd jmp n+38

n+7b: b8 00 00 00 00 mov eax,0

n+80: c9 leave

n+81: c3 ret

(a) Original code.

n+32 <cleanup_and_exit>:

n+32: 55 push ebp ← relocated

n+33: 89 e5 mov ebp,esp

n+35: 83 ec 18 sub esp,24

n+38: 89 04 24 mov [esp],eax

n+3b: e8 d5 fe ff ff call exit@plt

n+46 <check_ptrace>:

n+46: 55 push ebp

n+47: 89 e5 mov ebp,esp

n+49: 83 ec 18 sub esp,24

n+4c: c7 44 24 0c 00 00 00 00 mov [esp+0xc],0

n+54: c7 44 24 08 00 00 00 00 mov [esp+0x8],0

n+5c: c7 44 24 04 00 00 00 00 mov [esp+0x4],0

n+64: c7 04 24 00 00 00 00 mov [esp],0

n+6b: e8 cb fe ff ff call ptrace@plt ← existing far return

n+70: 85 c0 test eax,eax

n+72: 79 07 jns n+7b

n+74: b8 c3 00 00 00 mov eax,0xc3 ← modified exit argument

n+79: eb c3 jmp n+32 ← modified target

n+7b: b8 00 00 00 00 mov eax,0

n+80: c9 leave

n+81: c3 ret

(b) Protected code.

Listing 5.1: A ptrace detector with gadgets (shaded) overlapping sensitive areas.
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(gdb) set *(unsigned char*)0x08048479=0x90

(gdb) set *(unsigned char*)0x0804847a=0x90

Listing 5.2: An attempt to disable the ptrace detector.

The ptrace detector checks if a process is being debugged using ptrace. To
achieve this, the detector calls the ptrace system call, requesting a trace of the host
process. If a debugger is already attached, this call fails, and the debugger is thus
detected. In the example, the detector jumps to a cleanup_and_exit function
if a debugger is detected.

Attackers commonly attempt to circumvent such anti-debugging code by modi-
fying it at runtime, as shown in Listing 5.2. In the listing, an adversary overwrites
the jump to the cleanup_and_exit function at address n+79 with nop instruc-
tions. The goal of this attack is to redirect control to a successful return even though
a debugger is attached.

Overlapping gadgets defend against this attack class, as they are destroyed if the
code they overlap with is modified. As mentioned in Section 5.3, this is detected
when the verification code using the gadgets fails to execute. Note that an adversary
could also modify the call to check_ptrace itself. As we show in Section 5.7.1,
Parallax can protect up to 90% of the binary, allowing us to defend against such
attacks by inserting protective gadgets beyond the primary list of instructions to
protect. While this example focuses on runtime code modification, Parallax also
prevents static code patching.

In Listing 5.1, four key code areas which adversaries are likely to target have
been protected using three overlapping gadgets. The first two locations are (1) the
call to ptrace itself, at address n+6b, and (2) the first argument to ptrace, at
address n+64, which requests a trace of the host process. An adversary may elimi-
nate the call, so that execution always falls through to the successful return code at
the end of the function. Also, an adversary may modify the call argument to request
another action from ptrace instead of a trace of the host process. Both the call
and its first argument are protected by a seven byte long overlapping gadget starting
at address n+66. This is an already existing gadget, which Parallax found without
making any code modifications. The gadget consists of the instructions and al,0;

add [eax],al; add al,ch; retf, and can be used to move the contents of
the ch register into the al register (the memory write can be ignored, since al is
zeroed out).

Note that it is also possible to protect the remaining ptrace arguments at ad-
dresses n+4c through n+5c. One possible way to protect these is to use the im-
mediate splitting rule, discussed in Section 5.4.2. For simplicity of the example, we
do not show these modifications in Listing 5.1. However, we provide a separate
example of the immediate splitting rule in Section 5.4.2.

Another possible attack location is (3) the jump to cleanup_and_exit, at
address n+79, which is taken if a debugger is detected. Eliminating this jump would
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again cause control to fall through to the successful return at the end of the function,
even if the call to ptrace failed. Parallax protects this jump by relocating the
cleanup_and_exit function, and modifying the jump offset to encode the ret
instruction for a gadget. The gadget starts at address n+78, and contains instructions
add bl,ch; ret.

Finally, the anti-debugging code could be disabled by (4) rewriting the jns in-
struction at address n+72 to an unconditional jmp instruction, so that the code
always jumps to a successful return. Parallax identifies two possible ways to protect
against this. The first is to modify the immediate operand of the mov instruction at
address n+74, such that its least significant byte encodes a ret instruction. This
creates a five byte long gadget at address n+71, consisting of the instructions sar
byte [ecx+0x7],0xb8; ret. This gadget fills the memory byte at address
[ecx+0x7] with the sign of the byte it contains (the bits are either all set to 0,
or all set to 1). The mov operand is an exit status, and can be safely modified as-
suming that the exit semantics differentiate only between zero and non-zero (see
Section 5.4.2).

An alternative way to protect the jns is to inject a spurious instruction directly
after it, which encodes the missing part of a partial gadget. In the example, we
did not use spurious instructions, in order to show that no added code is needed to
protect the function.

5.4.2 Binary Rewriting Rules

This section describes the binary rewriting rules Parallax uses to augment instruc-
tions with overlapping gadgets. The added gadgets do not induce any significant
performance overhead on the protected code, except where explicitly noted. In Sec-
tion 5.7.1, we measure the coverage of each of these rules. We base our approach on
binary rewriting techniques for legacy binaries explored in prior work [114; 199].

Existing gadgets Parallax searches for any existing gadgets which can be used to
protect code integrity. The use of existing gadgets is advantageous, as it requires no
modifications to the protected code regions. In Section 5.7.1, we find that 3%–6%
of the code bytes in our test cases is protectable using existing gadgets.

Modified immediate operands One rule used by Parallax to create new gadgets is
that a partial gadget may be combined with an adjacent immediate operand if this
operand can be modified to encode the missing portion of the desired gadget. In List-
ing 5.1, this rule has been applied in the operand of the instruction at address n+74.
We distinguish two ways in which immediate operands can be safely modified.

First, depending on the instruction type, immediates can be modified by split-
ting up their parent instructions. For instance, an addition can be split into two
additions or subtractions, where the first takes an arbitrary operand, and the second
compensates as required. Similarly, immediate operands of mov instructions can
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mov eax,1 b8 01 01 c3 00 mov eax,0xc30101

35 00 01 c3 00 xor eax,0xc30100

(a) Original code. (b) Protected code.

Listing 5.3: A split mov with overlapping gadgets (shaded).

be modified to encode a gadget, and this modification can then be compensated for
using bitwise operations on the destination operand. As an example of this rule,
Listing 5.3 shows how the immediate operand of a mov instruction is modified and
combined with an xor instruction to compensate for the modifications.

Instruction splitting induces a small performance overhead on the protected code.
Additionally, it may require the insertion of code to save and restore the CPU status
register, depending on the usage of status flags by subsequent instructions.

Second, it is often (though not always) possible to freely modify immediates
which set eax before a return, or push the status of the exit function. This is
because return value and exit status semantics commonly distinguish only between
zero and non-zero. This rule requires limited annotation or analysis of the relevant
semantics, and can be disabled for conflicting semantics.

Rearranged code and data Parallax also attempts to encode missing parts of gad-
gets in addresses and jump offsets by strategically aligning functions and global
variables in memory (e.g., by inserting padding bytes such as nop instructions). For
instance, in the example shown in Listing 5.1, we have forced the creation of a ret
instruction by aligning the cleanup_and_exit function such that the jump off-
set at address n+79 is equal to 0xc3 (the ret opcode).

Spurious instructions Spurious instructions which contain (parts of) gadgets can
be inserted at any place in the code, as long as care is taken to ensure that their side-
effects do not influence the semantics of the original code. This can be ensured by
saving and restoring the program state at each location where spurious instructions
are inserted. Alternatively, side-effect analysis can be performed on the inserted
instructions to determine whether any state needs to be saved [44].

The main benefit of spurious instructions is that they can always be inserted to
encode missing parts of gadgets, even when other strategies do not apply. However,
the tradeoff is that spurious instructions induce a slowdown on the protected code
similar to the inline hashing instructions used in Oblivious Hashing [55]. Given
that we aim to minimize overhead, Parallax currently does not implement spurious
instruction insertion.

Far-return gadgets Far returns (retf) are quite rare in compiler-generated x86
code. Nevertheless, gadgets ending in far returns can sometimes be used to pro-
tect code bytes, as was done at address n+66 in Listing 5.1. Parallax searches for
existing far-return gadgets in the same way as for near-return gadgets.
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Using add for memory operations One of the most useful instruction families for
gadgets is the add family. This is because the opcodes of add range from 0x00

to 0x05. As these values are very common in immediate operands, add-based
gadgets are easy to find or create. Listing 5.1 contains several gadgets which use
add instructions, such as the gadget protecting the call to ptrace.

Next to implementing additions, add instructions with memory operands can
also be used as loads and stores. For instance, add [ecx],eax implements a
store of the value in eax to the address in ecx, if this memory is initially zero.

5.5 Verifying Code Integrity

In Section 5.4, we discussed the creation of overlapping gadgets for code protection.
To protect their parent instructions, the integrity of these gadgets must be verified by
one or more ROP chains. In this section, we discuss the translation of existing code
from the protected program into ROP chains which act as verification code. These
ROP chains use the gadgets contained in the protected code regions.

We stress that the verification code does not perform any active verification,
checksumming or otherwise. Instead, it detects and responds to tampering in a com-
pletely passive way, by malfunctioning if the gadgets in the protected code regions
are damaged by tampering attempts.

We implement verification code at function granularity, meaning that whole func-
tions from the original program are translated to ROP code. For brevity, we refer to
a function-level verification ROP chain as a function chain. In Section 5.5.3, we also
briefly report on our experiences with instruction-level verification.

5.5.1 Implementation of Function Chains

Function chains were already briefly discussed in Section 5.3. Figure 5.3a illustrates
a binary protected using function chains. As discussed in Section 5.3, the protected
binary contains several gadgets, g1, g2, g3, which are crafted such that they overlap
with instructions which must be protected. Furthermore, a selected function f1 from
the protected binary’s code section is translated into equivalent ROP verification
code, denoted as ROP (f1). Additionally, a small amount of loader code is inserted,
which is responsible for starting the execution of the verification code. The minimum
operations required for this are (1) pointing the stack pointer to the beginning of
ROP (f1), and (2) executing a return instruction to transfer control to the first gadget
in the verification code.

In our Parallax prototype, we implemented function-level verification on top of
a modified version of the open source ROP compiler ROPC [6], which is based on
Q [159]. Our prototype loader code, which bootstraps the execution of the func-
tion chains, is more extensive than shown in Figure 5.3a. Particularly, in addition
to pointing the stack pointer to the start of a function chain and executing a return,
we also ensure that execution continues cleanly after the function chain is complete.
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Figure 5.3: Verification at function and instruction level.

To achieve this, the loader code appends an epilogue to each function chain before
transferring control to it. The epilogue consists of the address of a pop esp gadget,
followed by a stack address pointing into the original stack frame of the calling func-
tion. At this stack address, we store the return address for the function chain. Before
the epilogue’s pop esp gadget is executed, the stack pointer points inside the func-
tion chain. Upon completion of the function chain, the pop esp points esp back
into the calling function frame, to the stack location containing the function chain’s
return address. Thus, when the function chain returns, this transfers control back to
the calling function, and program execution continues normally.

In addition to the epilogue, we perform a pushad directly before, and a popad
directly after each function chain. These instructions save and restore the register
state, preventing problems due to registers clobbered by the function chain.

5.5.2 Dynamically Generated Function Chains

Function chains can reside in data memory, which is writable even with W⊕X pro-
tection on. This means that it is possible to generate function chains at runtime.
Parallax implements optional support for this. Dynamic function chain generation
has several advantages. (1) It allows for encrypted and self-modifying function
chains, which are more resistant to analysis than their non-dynamic counterparts.
We evaluate the performance of RC4-encrypted and xor-encrypted function chains
in Section 5.7.2. (2) Multiple instances of the same function chain can be generated
probabilistically, with each instance using a different set of semantically equivalent
gadgets. This allows a small function chain to (probabilistically) verify a large set
of gadgets, checking a subset each time it is executed.
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Figure 5.4: Generating a function chain by combining vectors from a basis B, indexed by arrays

A1 and A2.

Specifically, let T := {t1, . . . , tn} be the set of used gadget types in the function
chain, and for 1 ≤ i ≤ n, define Gi := {g | g implements ti}. Thus, each Gi is
the set of all gadgets which implement gadget type ti. For probabilistically gener-
ated function chains, we use an extended notion of the gadget types mentioned in
Section 5.3, which defines not only the operation implemented by a gadget, but also
its operand registers and memory locations. Then, for every operation, the function
chain can probabilistically choose a gadget g ∈ Gi. In total, this yields

∏n

i=1 |Gi|

possible distinct gadget subsets which can be checked by the same function chain.
Because the used subset of gadgets is probabilistic, it is hard for an adversary to be
sure that his code modifications will work for every execution of the program. This
is an especially useful property to protect against scenarios where adversaries aim to
widely distribute modified binaries.

Parallax implements probabilistically generated function chains by considering
each function chain as a series of vectors v1, . . . , vn, where vi ∈ {0, 1}w for 1 ≤ i ≤

n. Here, w is the native memory word length in bits (typically 32 or 64). Intuitively,
each vector in a function chain corresponds to a gadget address or constant used
by the chain (all constants in our function chains are word-sized). Each vector can
be generated using a linear combination of vectors from a basis B = {b1, . . . , bw}

which spans the vector space {0, 1}w.

To support dynamic generation of multiple variants of the same function chain,
we define a series of N index arrays A1, . . . , AN , such that each Ai for 1 ≤ i ≤ N

is a two-dimensional array of vector indices. The number of index arrays N can
be arbitrarily chosen. If the function chain contains l vectors, then each Ai stores
l lists of vector indices. If the l-th vector from the function chain is of gadget type
t, then the l-th index list in each Ai contains indices j1, . . . , jk which index vectors
bj1 , . . . , bjk from B such that bj1⊕, . . . ,⊕bjk ∈ {g | g implements t}. This means
we can form N semantic equivalents for each vector in a function chain by choosing
randomly between A1, . . . , AN and combining the basis vectors specified there. Fig-
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ure 5.4 illustrates this approach to generating function chains. For a function chain
of length l, there exist at most N l variants (assuming that no two Ai store the same
index list at any position).

We generate the index arrays by repeatedly compiling the function chain, each
time feeding a different gadget mapping to the ROP compiler. By varying the set
of gadget addresses used in each mapping, we obtain different compiled variants of
the function chain. We then split each vector from every compiled variant into basis
vectors, and store the indices of these in the index arrays. Note that the compiled
function chains themselves are not stored in the binary, as shown in Figure 5.4. In-
stead, we use the index arrays to probabilistically generate a function chain variant at
runtime, just before the function chain is called. Since we randomly choose between
the index arrays at vector granularity, the possible number of function chain variants
generated at runtime is greater than the number of compiled variants.

In Section 5.7.2, we discuss our performance experiments on dynamic function
chain generation. We report results for function chains encrypted with RC4 and xor,
and for probabilistically generated function chains.

5.5.3 Instruction-Level Verification

In addition to function-level verification, we also experimented with instruction-level
verification. Instead of translating a whole function, this approach translates many
single instructions into short ROP chains, which we refer to as µ-chains. Figure 5.3b
compares µ-chains to function chains.

We find µ-chains to be suboptimal for several reasons. (1) To minimize control
transfer overhead, µ-chains are best implemented inline in the code section, as shown
in Figure 5.3b. This means that, unlike function chains, µ-chains cannot benefit from
additional protection by checksumming (due to the attack of Wurster et al. [189]) or
self-modification. (2) The inline gadget setup instructions used by µ-chains can be
detected through static analysis, and can be exploited by an adversary to pinpoint
gadgets used for protection. (3) The overhead of µ-chains exceeds that of function
chains by a factor of 2× on average, because each µ-chain contains its own prologue
and epilogue. For these reasons, we focus on function-level verification.

5.6 Attack Resistance

This section discusses the resistance of our technique to attacks which attempt to
disable, circumvent, or tamper with the verification code. As mentioned, the veri-
fication code is a translation to ROP of code from the original program, which is
required for the program to correctly execute. The challenge for an adversary is thus
to tamper with the protected program in such a way that this is not detected by the
verification code, without modifying the verification code functionality. The rest of
this section discusses three attack classes.



5.6. ATTACK RESISTANCE 87

C
h
a
p
te

r
5

5.6.1 Code Restoration

An adversary may attempt to evade detection by restoring modified code after it has
executed. Such code restore attacks are only relevant in dynamic (runtime) tamper-
ing. For static code patching/rewriting scenarios, adversaries cannot use code restore
attacks. It is well-recognized in the literature that no self-sufficient tamperproofing
algorithm can completely prevent code restore attacks [60]. However, Parallax com-
plicates such attacks in several ways. (1) It is critical to use verification functions
which are executed repeatedly through the runtime of the protected application (pos-
sibly asynchronously, in a separate thread). As we show in Section 5.7.2, Parallax

achieves this while keeping performance overhead low (up to 4%). (2) By decou-
pling verification code from protected code, Parallax maximizes the difficulty for an
adversary to pinpoint which modifications trigger the tamper response.

5.6.2 Verification Code Replacement

Additionally, an adversary may tamper with the code locations where verification
code is initialized, and attempt to replace it with another ROP chain, or with non-
ROP code. Several factors prevent such attacks. (1) The replacement code must
be functionally equivalent to the verification code, while not using the same gadgets.
The requirement for functional equivalence imposes a first challenge to the adversary,
namely the need to reverse engineer the verification code. This is a time-consuming
effort, which is complicated by the lack of analysis tools for ROP code [120]. (2)
More fundamentally, Parallax increases the reverse engineering effort by using dy-
namically generated and self-modifying ROP code, as proposed in Section 5.5.2. (3)
Because the verification code initialization is deterministic, it could be protected
using techniques orthogonal to ours, like oblivious hashing.

5.6.3 Verification Code Modification

Adversaries may also modify the verification code itself. Here, one of the main
strengths of Parallax becomes apparent: because the verification code resides in
data memory, it can be protected by any traditional checksumming technique. At
the same time, there is no risk of the attack of Wurster et al. [189], because that
attack relies on the handling of code as data. To prevent persistent tampering with
the checksumming code, we propose to use a network of cross-verifying checksums,
as explored by Chang et al. for code verification [51]. Such a network can be imple-
mented by embedding the checksumming code inside the verification functions, and
letting each verification function checksum itself as well as several others. This way,
checksumming can also be embedded in dynamically generated verification code
(which itself also complicates tampering). As checksumming is not fundamental to
our technique, we do not implement it in our proof of concept. We expect that the
performance of checksumming will be similar to that of verification code encryption
(evaluated in Section 5.7.2).
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Figure 5.5: Code bytes protectable by rules from Section 5.4.2.

5.7 Evaluation

This section evaluates the performance of Parallax, our prototype implementation of
ROP-based code integrity verification. In Section 5.7.1, we measure the percentage
of code bytes in real-world programs that can be protected using overlapping gadgets.
Next, Section 5.7.2 evaluates the runtime overhead induced by the verification code.

5.7.1 Protectable Code Locations

We define a protectable code byte as an instruction byte for which we can craft
an overlapping gadget using one of the rewriting rules discussed in Section 5.4.2.
We used Parallax to measure the percentage of protectable code bytes in a set of
real-world programs consisting of wget, nginx, bzip2, gzip, gcc, and lame,
compiled for x86 using gcc 4.6.3.

Figure 5.5 shows the percentage of protectable code bytes using existing near-
return gadgets, far-return gadgets, and gadgets created by modifying immediates
and jump offsets. Additionally, the figure shows the percentage of code bytes that
can be protected using any of these rules. This can be lower than the sum of the
per-rule percentages, since code bytes may be protectable using multiple rules.

In our experiments, modifications to immediates were only applied in add, adc,
sub, sbb, and mov instructions. Examples of how we apply such modifications
were discussed in Section 5.4.2. Modifications to jump offsets were considered for
all variants of the jmp and jcc instructions, as well as for call instructions. No
results are shown for the spurious instructions rule, as it is not implemented in Paral-

lax and can always be applied. Furthermore, we limited the length of the considered
gadgets to six instructions, as longer gadgets are difficult to use in practical ROP
chains. Note that it is not necessarily possible to protect all potentially protectable
code bytes at once, since the required modifications may conflict.
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The lowest protectability rate was 63% (for lame), and the highest rate was 90%
(for gcc). Using any of the rewriting rules, an average of 75% of the code bytes is
protectable. As can be seen from Figure 5.5, between 3% and 6% of the code bytes
contains an existing overlapping near-return gadget. Additionally, up to 1% of the
code bytes in the test programs overlaps with a far-return gadget. The near-return and
far-return gadgets add up to protect between 4% and 7% of the code bytes, without
requiring any modifications. The protectability rate for the immediate modification
rule ranges from 37%–60%, while ranging from 43%–84% for jump modification.

5.7.2 Runtime Overhead

We also evaluated the performance of verification code. To evaluate the performance,
we selected one function from each program and measured the performance before
and after translating it to ROP code. We use the following (fully automatable) algo-
rithm to select which function to translate in a given program. (1) We first analyze
the call graph of the program to find functions which are called repeatedly from
several locations. This ensures that the integrity is verified repeatedly. (2) We then
profile the program, and select the functions from the previous step which contribute
less than a threshold to the total execution time (2% in our experiments). (3) Finally,
we select from this the function containing the most types of operations, ensuring
good coverage of all gadgets. We considered both application-specific and library
functions for translation to function chains.

For each selected function, we measured the cleartext slowdown induced purely
by the transformation to a function chain. Furthermore, we measured slowdowns for
RC4-encrypted and xor-encrypted function chains, as well as function chains gen-
erated probabilistically through linear combination (as described in Section 5.5.2).
Figures 5.6a and 5.6b show the resulting function chain slowdowns and overall run-
time impacts for each of these hardening strategies.

The cleartext function chain slowdown ranges from 3.7× for gcc to 46.7× for
wget. RC4-encrypted function chains have the poorest performance, followed by
probabilistically generated and xor-encrypted function chains. The slowdown of
RC4-encrypted function chains ranges from 7.6× for nginx to 64.3× for wget,
but the greatest performance decrease compared to other methods is seen in lame.
This is because the function chain for this test case executes in only 4µs, so that the
RC4 initialization phase causes a large slowdown.

Despite the significant slowdown induced on each translated function, the whole-
program overheads are limited, ranging from 0.1% for gcc to 2.7% for wget using
cleartext function chains. When using RC4 encryption, the overhead ranges from
0.2% for gcc to 3.7% for wget. In our experiments, the decryption step (xor, RC4,
or linear combination) was performed on each function chain call. Summarizing,
the overall runtime overhead of protected binaries is limited, provided that care is
taken not to use performance-critical functions as verification code. There is thus a
delicate tradeoff between runtime overhead and verification frequency.
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Figure 5.6: Slowdowns and whole-program overheads for function chains.

5.8 Discussion and Limitations

This section discusses the tradeoffs and limitations of Parallax. We also compare
these tradeoffs to those of other tamperproofing techniques.

5.8.1 Dynamic Circumvention

The goal of our work is to protect code against explicit modifications. Some dynamic
analysis primitives, such as software breakpoints and dynamic code patching, are
also detected by Parallax (see Section 5.4.1). However, Parallax does not explicitly
defend against dynamic analysis. Specifically, some dynamic analysis tools, such
as Pin [101; 121] and DynamoRIO [42], instrument binaries without altering their
runtime code section, and are thus not detected by Parallax. However, Parallax can
protect specialized detection code for these tools, developed in related work [89].
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5.8.2 Control-Flow Integrity

Prior work has explored the detection of ROP-based exploit code at runtime, us-
ing heuristic-based system-level monitoring tools like kBouncer and ROPecker [56;
136]. These tools may conflict with our tamperproofing algorithm, detecting its
use of ROP code as if it were malicious. However, recent work has shown that
heuristic-based monitoring approaches can be fundamentally circumvented by sim-
ple modifications to ROP chains [76; 97; 158]. Parallax can employ these same
modifications to avoid conflicts. For instance, using a small number of long gadgets
or NOP-gadgets is sufficient to allow Parallax to operate in unison with heuristic
system-level ROP-monitoring tools [97]. Since such gadgets are present by nature
in nearly all applications, Parallax can use them without opening the application up
to ROP attacks any more than it already was.

Stronger Control-Flow Integrity (CFI) approaches [23; 133; 197; 199], including
the original work by Abadi et al. [14], are applied at the application level rather than
the system level. Full CFI, as proposed by Abadi et al., is difficult to combine
with Parallax, due to its need to record (and thus reveal to an adversary) all legal
control transfers (including those targeting protective gadgets). However, as these
are application-level approaches, there is a large amount of leeway for balancing the
level of CFI enforcement against the desired level of tamperproofing per binary.

5.8.3 Protection Coverage

Parallax provides different protection tradeoffs than oblivious hashing. (1) As men-
tioned, OH can only protect code with deterministic execution state [55]. Arguably,
non-deterministic code is more likely to be targeted by adversaries than determin-
istic code. For instance, adversaries commonly modify control flow instructions
which depend on external inputs or unpredictable system call return values. Thus,
a significant advantage of our technique is that it can protect both deterministic and
non-deterministic code. (2) Oblivious hashing covers only code paths of which the
state was recorded during testing. In contrast, our technique is completely static, and
can be applied even to untested code.

In general, self-sufficient tamperproofing systems cannot implement indefinite
attack resistance [27]. Rather, Parallax raises the bar for attackers, and increases the
effort required to tamper with protected code. A determined adversary may even-
tually succeed in tampering with code by ensuring one or more of the following
conditions. (1) The modifications reside entirely in instructions without overlapping
gadgets. As discussed in Section 5.7, Parallax attempts to minimize such instruc-
tions. (2) Protected code is modified such that the resulting gadgets do not affect the
outcome of the verification code. (3) Protected code is altered such that the resulting
gadgets are semantically equivalent to the originals (including memory/register allo-
cation). These conditions significantly restrict the modifications that can be safely
made, making it harder for an attacker to implement arbitrary modifications.
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5.9 Related Work

Traditional anti-tampering algorithms make use of code introspection, typically in
the form of checksumming [60]. A highly resilient example of such an algorithm
was proposed by Chang et al. [51], who use a network of cross-verifying code re-
gions based on checksumming. Unfortunately, Wurster et al. have shown all such
algorithms to be inherently vulnerable to an attack which exploits the distinct han-
dling of code and data in modern processors [189]. The attack completely defeats all
introspection-based algorithms by allowing an attacker to freely modify code in the
processor’s instruction cache, while leaving the data cache untouched. Later work
has explored methods to re-enable code self-checksumming by implementing checks
to detect the attack of Wurster et al [93]. Unfortunately, these checks require W⊕X
protection to be disabled, making the checksummed binary vulnerable to traditional
code injection.

The foremost among the few algorithms designed to defeat this attack is obliv-
ious hashing [55; 102]. OH verifies code integrity by checking that hashes of the
execution state correspond to known correct values. In principle, it provides strong
protection which is difficult to circumvent. However, the execution state is required
to be deterministic, preventing OH from protecting code with non-deterministic in-
puts, like environment parameters or system call return values. The main benefit of
our approach compared to OH is that it can protect code regions which OH cannot.

Previous work has proposed overlapping non-gadget instructions for tamper-
proofing [102; 118]. Instruction-level overlapping is only applicable to architectures
with variable-length byte-aligned instructions [102]. In contrast, our ROP-based ap-
proach does not have this restriction [45; 52]. Furthermore, overlapping non-gadget
instructions requires the insertion of additional jumps and partial instructions in the
protected code, which leads to whole-program slowdowns of up to 3× [102]. Our
approach provides better overall performance, and can keep performance overhead
isolated from the protected code itself. Another approach to overlapping is to share
common code blocks between functions. The usefulness of this approach is lim-
ited, as most common code blocks found in real-world binaries are non-sensitive
instruction sequences like function prologues. It is typically not possible to protect
non-trivial code blocks longer than one instruction using this approach [102].

Concurrently with our work, Lu et al. have explored the use of ROP for code
obfuscation [119]. However, they do not consider tamperproofing, and thus do not
explore how to maximize the coverage of protective gadgets, or how to craft gadgets
which overlap with sensitive instructions. Instead, their work focuses on the use of
existing (partial) gadgets to create ROP chains which are embedded with the intent
of hiding functionality. Furthermore, Lu et al. do not attempt to prevent adversaries
from tampering with their ROP chains once these are discovered. Similarly, prior
work has proposed code hiding techniques based on function reuse, but this work
has not focused on extending this to tamperproofing [117].
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5.10 Conclusion

We introduced a novel code self-verification technique based on overlapping ROP
gadgets with selected code. Several rewriting rules can be used to increase the cover-
age of protective gadgets, such that up to 90% of all code bytes are protectable. This
coverage exceeds that of oblivious hashing, and our technique provides better protec-
tion for commonly attacked non-deterministic control flow instructions. Unlike code
introspection-based verification algorithms, our approach is not vulnerable to direct
instruction cache modification attacks. Furthermore, in contrast to oblivious hashing
algorithms, our approach can protect non-deterministic code. The performance over-
head of our approach can be confined to verification code which is separate from the
protected code. Thus, performance-sensitive code is protectable without any slow-
down, confining the performance penalty to other code. The performance overhead
for programs protected using our technique is less than 4%.





Discussion

In Chapters 3–5, we have explored several methods for the efficient and safe im-
plementation of security solutions for binaries. We now briefly recapitulate these
methods, discussing their tradeoffs and applications for future binary-based work.
For the purposes of this discussion, we differentiate between strategies for (1) maxi-
mizing crash-safety, and (2) minimizing runtime and analysis overhead.

Crash-safety

We have discussed several approaches for using binary rewriting to add security to
binaries, while ensuring that these modifications will not cause crashes or undefined
behavior, despite potential inaccuracies in the underlying binary analysis primitives.
Chapter 6 provides more details on the precision yielded by modern binary analysis
platforms for commonly used binary analysis primitives, providing more insight into
the potential inaccuracies to anticipate while selecting which specific crash-safety
methods to apply.

Overapproximation As evaluated and discussed in detail in Chapter 6, it is typ-
ically not reasonable to expect perfect precision in primitives such as the (I)CFG.
Thus, binary analyses must often choose to either overapproximate or underapproxi-

mate a used primitive. Overapproximation is useful in situations where an omission
in a binary analysis primitive leads to false positive or false negative security alerts,
or even crashes or undefined behavior.

For instance, PathArmor (Chapter 4) applies overapproximation on the ICFG and
on the estimation of may-call semantics for indirect calls. This is a sensible strategy
for CFI solutions, as a missing control transfer will lead the CFI system to mistak-
enly label some legal flows as illegal. As a tradeoff in this case, overapproximation
typically leads to the (conservative) inclusion of some edges or paths which are not
actually legal, thus reducing security by introducing new paths which can potentially
be abused by an attacker.

Another example of overapproximation is seen in StackArmor’s SP analyzer
(Chapter 3), which statically analyzes stack frames for vulnerabilities to determine
the degree of protection needed. Here, the tradeoff is not a reduction in security, but
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a potential increase in runtime overhead, as StackArmor may conservatively protect
some stack frames which do not actually require protection.

Underapproximation Overapproximation aims to minimize false negatives in a dis-
assembly primitive (such as missing edges in a CFG), at the cost of introducing false
positives. In contrast, underapproximation minimizes false positives, at the cost of
false negatives.

To see why this is sometimes useful, consider StackArmor’s DA and BR ana-
lyzers, which perform binary-level data structure analysis to determine which stack
objects to isolate from each other. Here, we would prefer that the analysis fails
to distinguish some stack objects from each other (underapproximation), instead of
mistakenly splitting a single object into two (overapproximation). StackArmor is de-
signed such that the failure to isolate some stack objects gracefully reduces security,
without any other adverse effects.

Minimizing instrumentation errors A given security policy is typically achievable
through multiple instrumentation methods. For instance, coarse-grained CFI poli-
cies [197; 199] can be built upon function-level analysis, or alternatively, by in-
strumenting all call and ret sites. However, given that function detection is far
more error-prone than instruction-level analysis (as discussed in Chapter 6), the lat-
ter method of instrumentation leads to a more reliable implementation. Thus, while
function-level analysis cannot always be avoided (and indeed, is used in both PathAr-

mor and StackArmor), it is best used only when necessary. When using imprecise
binary analysis primitives such as function detection is unavoidable, other methods
of ensuring instrumentation safety should be used in unison.

Runtime Analysis Given the difficulty of static analysis, we sometimes use limited
runtime analysis to achieve precision which is hard to obtain statically. For instance,
PathArmor uses load-time detection of PLT/GOT entries and library base addresses.
We minimize our usage of runtime analysis and error correction to avoid the large
overheads imposed by full-scale dynamic analysis (as discussed in Chapter 2).

Policy-driven Checks As discussed in Chapter 2, it is generally not reasonable to
rely on the presence of source-level information or debugging symbols, as this infor-
mation is likely to be absent for legacy or proprietary binaries. However, because
symbolic information can greatly improve the ease and precision of binary analy-
sis, it is typically worth it to devote additional implementation effort to make use of
such information when it is available. Therefore, both PathArmor and StackArmor

implement a policy-driven approach, which allows them to gracefully scale analysis
precision and security guarantees up or down depending on the level of symbolic in-
formation available. Parallax also makes (optional) use of source-level information
to aid the selection of code to be used for protection and verification, and to ease
binary rewriting.
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Runtime and Analysis Performance

In addition to minimizing instrumentation errors, we also aim to keep runtime over-
head within tolerable limits. Moreover, (static) analysis time should be kept within
reasonable limits; while this is typically of lesser importance, we want to avoid non-
scalable analyses.

Lightweight Instrumentation Given the substantial runtime overheads imposed by
both static and dynamic instrumentation, the amount of instrumentation code should
be reduced to a minimum to avoid unnecessary performance impact. For instance,
PEBIL conservatively saves all registers that may be clobbered before jumping to
instrumentation code, and restores them afterwards [114]. As such save/restore op-
erations are quite expensive, we reduced these operations to save only the regis-
ters actually used in the StackArmor instrumentation, leading to a significant per-
formance increase. Moreover, it is sometimes possible to avoid the need for instru-
mentation altogether by implementing more advanced offline static analysis, such
as StackArmor’s SP analyzer which performs heavyweight instrumentation only for
stack frames that are (conservatively) determined to need it.

Runtime Analysis When using context-sensitive or path-sensitive static analysis,
the analysis time required increases exponentially with the number of branches in
the binary. Even for moderately-sized binaries, the analysis quickly becomes un-
scalable, necessitating the postponing of some analysis steps until runtime, when
more complete information about the taken control flow path is available. We im-
plemented this approach to great effect in PathArmor’s path analyzer component,
which performs path analysis on a Just-in-Time (JIT) basis only for paths executed
at runtime.





II Evaluating and

Improving Disassembly





Outline

In Part I of this thesis, we have demonstrated the feasibility of binary-level methods
for adding security to binaries, even based on imperfect binary analysis primitives.
We derived several strategies for ensuring crash-safety and analysis efficiency in
binary-based security systems.

To facilitate the design of future systems, we now focus our attention on quanti-
fying the precision of commonly used disassembly primitives in modern binary anal-
ysis systems, and measuring the true prevalence of complex cases in real-world bina-
ries. In addition, we implement a novel function detection strategy, which improves
the precision of function identification (as we will show, a much used but highly
imprecise primitive) while eliminating the dependence on compiler-/architecture-
specific signatures. Our main contributions in this part are thus as follows.

C(1): Quantifying the precision of disassembly primitives allows us to design more
efficient and more secure systems, by improving our understanding of precision and
performance tradeoffs and the effects of the safety and efficiency methods explored
in Part I.

C(2): As mentioned in Chapter 1, our evaluation of disassembly precision addresses
common concerns among reviewers and researchers of binary-level systems, regard-
ing the applicability and reliability of such systems in practice.

C(3): Our improved function detection approach translates directly to improved
precision (and thus, in many cases, improved security) in function-level systems,
including CFI systems and automated bug detection systems.

There is thus a symbiotic relationship between Part I and Part II of this thesis:
Part II provides a foundation and improved primitives for building such systems as
described in Part I, while Part I has made clear the concerns regarding binary analysis
work, and the binary analysis properties on which to focus our attention in Part II.
We subdivide the following discussion as follows.

(1) Chapter 6 focuses on an in-depth evaluation of x86/x64 disassembly on realistic
compiler-generated binaries, addressing C(1) and C(2).

(2) We present our function detection work in Chapter 7, addressing C(3).
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Chapter 6

An In-Depth Analysis of

Disassembly on Full-Scale

x86/x64 Binaries

It is well-known that static disassembly is an unsolved problem, but how much of
a problem is it in real software—for instance, for binary protection schemes? This
chapter studies the accuracy of nine state-of-the-art disassemblers on 981 real-world
compiler-generated binaries with a wide variety of properties. In contrast, prior work
focuses on isolated corner cases; we show that this has led to a widespread and overly
pessimistic view on the prevalence of complex constructs like inline data and over-
lapping code, leading reviewers and researchers to underestimate the potential of
binary-based research. On the other hand, some constructs, such as function bound-
aries, are much harder to recover accurately than is reflected in the literature, which
rarely discusses much needed error handling for these primitives. We study 30 pa-
pers recently published in six major security venues, and reveal a mismatch between
expectations in the literature, and the actual capabilities of modern disassemblers.
Our findings help improve future research by eliminating this mismatch.

6.1 Introduction

The capabilities and limitations of disassembly are not always clearly defined or un-
derstood, making it difficult for researchers and reviewers to judge the practical fea-
sibility of techniques based on it. At the same time, disassembly is the backbone of
research in static binary instrumentation [31; 114; 149], binary code lifting to LLVM
IR (for reoptimization or analysis) [179], binary-level vulnerability search [140], and
binary-level anti-exploitation systems [23; 54; 144; 197]. Disassembly is thus cru-
cial for analyzing or securing untrusted or proprietary binaries, where source code is
simply not available.
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The accuracy of disassembly strongly depends on the analyzed binary. In the
most general case, the disassembler can make very few assumptions on the structure
of a binary—high-level concepts like functions and loops have no real significance at
the binary level [25]. Moreover, the binary may contain complex constructs, such as
overlapping or self-modifying code, or inline data in executable regions. This is es-
pecially true for obfuscated binaries, making disassembly of such binaries extremely
challenging. Disassembly in general is undecidable [188]. On the other hand, one
might expect that compilers emit code with more predictable properties, containing
a limited set of patterns that the disassembler may try to identify.

Whether this is true is not well recognized, leading to a wide range of views
on disassembly. These vary from the stance that disassembly of benign binaries is
a solved problem [199], to the stance that complex cases are rampant [125]. It is
unclear which view is justified in a given situation. The aim of our work is thus
to study binary disassembly in a realistic setting, and more clearly delineate the
capabilities of modern disassemblers.

It is clear from prior work that obfuscated code may complicate disassembly in a
myriad of ways [110; 118]. We therefore limit our study to non-obfuscated binaries
compiled on modern x86 and x64 platforms (the most common in binary analysis
and security research). Specifically, we focus on binaries generated with the popular
gcc, clang and Visual Studio compilers. We explore a wide variety of 981 realis-
tic binaries, including stripped, optimized, statically linked, and link-time optimized
binaries, as well as library code that includes handcrafted assembly. We disassem-
ble these binaries using nine state-of-the-art research and industry disassemblers,
studying their ability to recover all disassembly primitives commonly used in the
literature: instructions, function start addresses, function signatures, Control Flow
Graphs (CFG) and callgraphs. In contrast, prior studies focus strongly on complex
corner cases in isolation [125; 135]. Our results show that such cases are exceed-
ingly rare, even in optimized code, and that focusing on them leads to an overly
pessimistic view on disassembly.

We show that many disassembly primitives can be recovered with better accuracy
than previously thought. For instance, instruction accuracy often approaches 100%,
even using linear disassembly. On the other hand, we also identify some primitives
which are more difficult to recover—most notably, function start information.

To facilitate a better match between the capabilities of disassemblers and the ex-
pectations in the literature, we comprehensively study all binary-based papers pub-
lished in six major security conferences in the last three years (2013–2015). Iron-
ically, this study shows a focus in the literature on rare complex constructs, while
little attention is devoted to error handling for primitives that really are prone to
inaccuracies. For instance, only 25% of Windows-targeted papers that rely on func-
tion information discuss potential inaccuracies, even though the accuracy of function
detection regularly drops to 80% or less. Moreover, less than half of all papers im-
plement mechanisms to deal with inaccuracies, even though in most cases errors can
lead to malignant failures like crashes.
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Contributions & Outline The contributions in this chapter are as follows.

• We study disassembly on 981 full-scale compiler-generated binaries, to clearly
define the true capabilities of modern disassemblers (Section 6.3) and the im-
plications on binary-based research (Section 6.4).

• Our results allow researchers and reviewers to accurately judge future binary-
based research—a task currently complicated by the myriad of differing opin-
ions on the subject. To this end, we release all our raw results and ground truth
for use in future evaluations of binary-based research.1

• We analyze the quality of all recent binary-based work published in six major
security venues by comparing our results to the requirements and assumptions
of this work (Section 6.5). This shows where disassembler capabilities and
the literature are mismatched, and how this mismatch can be resolved moving
forward (Section 6.6).

6.2 Evaluating Real-World Disassembly

This section outlines our disassembly evaluation approach. We discuss our results,
and the implications on binary-based research, in Sections 6.3–6.4. Sections 6.5–6.6
discuss how closely expectations in the literature match our results.

6.2.1 Binary Test Suite

We focus our analysis on non-obfuscated x86 and x64 binaries generated with mod-
ern compilers. Our experiments are based on Linux (ELF) and Windows (PE) bina-
ries, generated with the popular gcc v5.1.1, clang v3.7.0 and Visual Studio 2015
compilers—the most recent versions at the time of writing. The x86/x64 instruc-
tion set is the most common target in binary-based research. Moreover, x86/x64
is a variable-length instruction set, allowing unique constructs such as overlapping
and “misaligned” instructions which can be difficult to disassemble. We exclude
obfuscated binaries, as there is no doubt that they can wreak havoc on disassembler
performance and we hardly need confirm this in our experiments.

We base our experiments on a test suite composed of the SPEC CPU2006 C
and C++ benchmarks, the widely used and highly optimized glibc-2.22 library,
and a set of popular server applications consisting of nginx v1.8.0, lighttpd
v1.4.39, opensshd v7.1p2, vsftpd v3.0.3 and exim v4.86. This test suite has
several properties which make it representative: (1) It contains a wide variety of
realistic C and C++ binaries, ranging from very small to large; (2) These correspond
to binaries used in evaluations of other work, making it easier to compare our results;
(3) The tests include highly optimized library code, containing handwritten assembly
and complex cases which regular applications do not; (4) SPEC CPU2006 compiles

1Our data set and documentation are available at https://www.vusec.net/projects/disassembly/.

https://www.vusec.net/projects/disassembly/
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on both Linux and Windows, allowing a fair comparison of results between gcc,
clang, and Visual Studio.

To study the impact of compiler options on disassembly, we compile the SPEC
CPU2006 part of our test suite multiple times with a variety of popular configura-
tions. Specifically: (1) Optimization levels O0, O1, O2 and O3 for gcc, clang and
Visual Studio; (2) Optimization for size (Os) on gcc and clang; (3) Static linking
and link-time optimization (-flto) on 64-bit gcc; (4) Stripped binaries, as well as
binaries with symbols. We compile the servers for both x86 and x64 with gcc and
clang, leaving all remaining settings at the Makefile defaults. Finally, we compile
glibc-2.22 with 64-bit gcc, to which it is specifically tailored. In total, our test
suite contains 981 binaries and shared objects.

6.2.2 Disassembly Primitives

We test all five common disassembly primitives used in the literature (see Section 6.5).
Some of these go well beyond basic instruction recovery, and are only supported by
a subset of the disassemblers we test. Specifically, we study disassembly accuracy
for the following primitives: (1) Instructions, (2) Function starts, (3) Function sig-

natures, (4) the Interprocedural Control Flow Graph (ICFG), and (5) the Callgraph.
These primitives are defined in Chapter 2.1.

We focus on the ICFG (the union of the per-function CFGs, see Chapter 2.1),
rather than individual CFGs, because disassemblers often deviate from the tradi-
tional CFG; typically by omitting indirect edges, and sometimes by defining a global
ICFG only rather than per-function CFGs. Focusing our measurements on the cover-
age of basic blocks in the ICFG allows us to abstract from the disassemblers’ varying
CFG definitions. We pay special attention to hard-to-resolve basic blocks, such as
the heads of address-taken functions and switch/case blocks reached via jump tables.

Similarly to the CFG, many disassemblers deviate from the traditional callgraph
definition by including only direct call edges (largely due to the difficulty of statically
resolving indirect flows). In accordance with our definitions from Chapter 2.1, our
experiments therefore measure the completeness of this direct callgraph, and we
consider indirect calls and tailcalls separately in our complex case analysis.

6.2.3 Complex Constructs

We also study the prevalence in real-world binaries of complex corner cases which
are often cited as particularly harmful to disassembly [31; 125; 161]. We study
the following complex cases: (1) Overlapping/shared basic blocks, (2) Overlapping

instructions, (3) Inline data and jump tables, (4) Switches/case blocks (in the context
of indirect edge resolution), (5) Alignment/padding bytes, (6) Multi-entry functions,
and (7) Tail calls. These complex cases are described in Chapter 2.7. Note that in this
chapter, we study only the complex cases relevant to disassembly in general; we do
not discuss cases which are specific to function detection. These cases (such as non-
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contiguous functions and alternative prologues/epilogues), and methods for dealing
with them, are discussed in more detail in the context of our function detection work
in Chapter 7.

6.2.4 Disassembly & Testing Environment

We conducted all disassembly experiments on an Intel Core i5 4300U machine with
8GB of RAM, running Ubuntu 15.04 with kernel 3.19.0-47. We compiled our gcc
and clang test cases on this same machine. The Visual Studio binaries were com-
piled on an Intel Core i7 3770 machine with 8GB of RAM, running Windows 10.

We tested nine popular industry and research disassemblers: IDA Pro v6.7 [83],
Hopper v3.11.5 [69], Dyninst v9.1.0 [31], BAP v0.9.9 [44], ByteWeight v0.9.9 [26],
Jakstab v0.8.4 [106], angr v4.6.1.4 [165], PSI v1.1 [198] (successor of BinCFI [199]),
and objdump v2.22 [95].

ByteWeight yields only function starts, while Dyninst and PSI support only ELF
binaries (for Dyninst, this is due to our Linux testing environment). Jakstab supports
only x86 PE binaries. We omit angr results for x86, as angr is optimized for x64. PSI
is based on objdump, with added error correction. Section 6.3 shows that PSI (and
all linear disassemblers) perform equivalently to objdump; therefore, we group these
under the name linear disassembly. All others are recursive descent disassemblers,
as defined in Chapter 2.4.

6.2.5 Ground Truth

Our experiments require precise ground truth on instructions, basic blocks and func-
tion starts, call sites, function signatures and switch/case addresses. Much of this
information is normally only available at the source level. Clearly, we cannot obtain
our ground truth from any disassembler, as this would bias our experiments.

We base our ELF ground truth on information collected by an LLVM analysis
pass, and on DWARF v3 debugging information. Specifically, we use LLVM to
collect source-level information, such as the source lines belonging to functions and
switch statements. We then compile our test binaries with DWARF information, and
link the source-level line numbers to the binary-level addresses using the DWARF
line number table. We also use DWARF information on function parameters for
our function signature analysis. We strip the DWARF information from the binaries
before our disassembly experiments.

The line number table provides a full mapping of source lines to binary, but not
all instructions correspond directly to a source line. To find these instructions, we use
Capstone v3.0.4 to start a conservative linear disassembly sweep from each known
instruction address, stopping at control flow instructions unless we can guarantee the
validity of their destination and fall-through addresses. For instance, the target of a
direct unconditional jump instruction can be guaranteed, while its fall-through block
cannot (as it might contain inline data).
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This approach yields ground truth for over 98% of code bytes in the tested bina-
ries. We manually analyze the remaining bytes, which are typically alignment code
unreachable by control flow. The result is a ground truth file for each binary test
case, that specifies the type of each code byte, as well as instruction and function
starts, switch/case addresses, and function signatures.

We use a similar method for the Windows PE tests, but based on information
from PDB (Program Database) files produced by Visual Studio instead of DWARF.
This produces files analogous to our ELF ground truth format.

We release all our ground truth files and our test suite, to aid in future evaluations
of binary-based research and disassembly.

6.3 Disassembly Results

This section describes the results of our disassembly experiments, using the method-
ology as outlined in Section 6.2. We first discuss our results for application bi-
naries (SPEC CPU2006 and servers), followed by a separate discussion on highly
optimized libraries. Finally, we discuss the impact of static linking and link-time
optimization. We release all our raw results as part of our data set, and present
aggregated results here for space reasons.

6.3.1 Application Binaries

This section presents disassembly results for application code. We discuss accuracy
results for all primitives, and also analyze the prevalence of complex cases.

6.3.1.1 SPEC CPU2006 Results

Figures 6.1a–6.1e show the accuracy for the SPEC CPU2006 C and C++ benchmarks
of the recovered instructions, function starts, function signatures, CFGs and call-
graphs, respectively. We show the percentage of correctly recovered (true positive)
primitives for each tested compiler at optimization levels O0–O3. Note that the leg-
end in Figure 6.1a applies to Figures 6.1a–6.1e. All lines are geometric mean results
(simply referred to as “mean” from this point); arithmetic means and standard de-
viations are discussed in the text where they differ significantly. We show separate
results for the C and C++ benchmarks, to expose variations in disassembly accuracy
that may result from different code patterns.

Some disassemblers support only a subset of the tested primitives. For instance,
linear disassembly provides only instructions, and IDA Pro is the only tested dis-
assembler that provides function signatures. Moreover, some disassemblers only
support a subset of the tested binary types (for instance, only x64 ELF), and are
therefore only shown in the plots where they are applicable. For clarity, the graphs
only show results for stripped binaries; our tests with standard symbols (not DWARF
information) are discussed in the text.
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Figure 6.1: Disassembly results. The legend in Figure 6.1a applies to Figures 6.1a–6.1e. Sec-

tion 6.2.4 describes which platforms are supported by each tested disassembler.
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(a) Correctly disassembled instructions.
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(b) Correctly detected function start addresses.
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(c) Correctly detected non-empty function argument lists (IDA Pro only).
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(d) Correct and complete basic blocks for the ICFG.
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(e) Correctly resolved direct function calls (indirect calls discussed separately).

Instruction boundaries Figure 6.1a shows the percentage of correctly recovered
instructions. Interestingly, linear disassembly consistently outperforms all other dis-
assemblers, finding 100% of the instructions for gcc and clang binaries (without
false positives), and 99.92% in the worst case for Visual Studio.

Linear disassembly The perfect accuracy for linear disassembly with gcc and
clang owes to the fact that these compilers never produce inline data, not even for
jump tables. Instead, jump tables and other data are placed in the .rodata section.

Visual Studio does produce inline data, typically jump tables. This leads to some
false positives with linear disassembly (data treated as code), amounting to a worst-
case mean of 989 false positive instructions (0.56% of the disassembled code) for the
x86 C++ tests at O3. The number of missed instructions (due to desynchronization)
is much lower, at a worst-case mean of 0.09%. This is because x86/x64 disassembly
typically resynchronizes itself within two or three instructions [118].

Recursive disassembly The most accurate recursive disassembler in terms of
instruction recovery is IDA Pro 6.7, which closely follows linear disassembly with
an instruction coverage exceeding 99% at optimization levels O0 and O1, dropping
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to a worst case mean of 96% for higher optimization levels. The majority of missed
instructions at higher optimization levels are alignment code for functions and basic
blocks, which is quite common in optimized binaries. It consists of various (long)
nop instructions for gcc and clang, and of int 3 instructions for Visual Studio,
and accounts for up to 3% of all code at O2 and O3. Missing these instructions is
not harmful to common binary analysis operations, such as binary instrumentation,
manual analysis or decompilation.

False positives in IDA Pro are less prevalent than in linear disassembly. On gcc
and clang, they are extremely rare, amounting to 14 false positives in the worst test
case, with a mean of 0. Visual Studio binaries produce more false positives, peaking
at 0.16% of all recovered instructions. Overall, linear disassembly provides the most
complete instruction listing, but at a relatively high false positive rate for Visual
Studio. IDA Pro finds only slightly fewer instructions, with significantly fewer false
positives. These numbers were no better for binaries with symbols.

Dyninst and Hopper achieve best case accuracy comparable to IDA, but not quite
as consistently. Some disassemblers, notably BAP, appear to be optimized for gcc,
and show large performance drops when used on clang. The BAP authors in-
formed us that BAP’s results depend strongly on the disassembly starting points
(i.e., function starts), provided by ByteWeight. We used the default ELF and PE
signature files shipped with ByteWeight v0.9.9. Our angr results are based on the
CFGFast analysis recommended to us by the angr authors.

Overall, IDA Pro, Hopper, Dyninst and linear disassembly show arithmetic mean
results which are extremely close to the geometric means, exhibiting standard devi-
ations below 1%. The other disassemblers have larger standard deviations, typically
around 15%, with outliers up to 36% (for BAP on clang x86, as visible in Fig-
ure 6.1a).

C versus C++ Accuracy between C and C++ differs most in the lower scoring
disassemblers, but the difference largely disappears in the best performing disassem-
blers. The largest relative difference appears for clang.

Function starts The results for function start detection are far more diffuse than
those for instruction recovery. Consider Figure 6.1b, which shows the mean percent-
age of correctly recovered function start addresses. No one disassembler consistently
dominates these results, though Hopper is at the upper end of the spectrum for most
compiler configurations in terms of true positives. Dyninst also provides high true
positive rates, though not as consistently as Hopper. However, as shown in Fig-
ure 6.2, both Hopper and Dyninst suffer from high false positive rates, with worst
case mean false positive rates of 28% and 19%, respectively. IDA Pro provides lower
false positive rates of under 5% in most cases (except for x86 Visual Studio, where
it peaks at 20%). However, its true positive rate is substantially lower than those of
Hopper and Dyninst, regularly missing 20% or more of functions even at low opti-
mization levels. As with instruction recovery, the results for BAP and ByteWeight
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Figure 6.2: False positives for function start detection (percentage of total detected functions).

depend heavily on the compiler configuration, ranging from over 90% accuracy on
gcc x86 at O0, to under 20% on clang x64.

Even for the best performing disassemblers, function start identification is far
more challenging than instruction recovery. Accuracy drops particularly as the opti-
mization level increases, repeatedly falling from close to 99% true positives at O0,
to only 82% at O3, and worsened by high false positive rates. For IDA Pro, the worst
case mean true positive rate is even lower, falling to 62% for C++ on x64 gcc at O3.
Moreover, the standard deviation increases to over 15% even for IDA Pro.

False negatives The vast majority of false negatives is caused by indirectly
called or tailcalled functions (reached by a jmp instead of a call), as shown in List-
ing 6.1. This explains why the true positive rate drops steeply at high optimization
levels, where tail calls and functions lacking standard prologues are common (see
Section 6.3.1.3). Symbols, if available, help greatly in improving accuracy. They
are used especially effectively by IDA Pro, which consistently yields over 99% true
positives for binaries with symbols, even at higher optimization levels.

False positives Several factors contribute to the false positive rate. We analyzed
a random sample of 50 false positives for Dyninst, Hopper and IDA Pro, the three
best performing disassemblers in function detection.

For Dyninst, false positives are mainly due to erroneously applied signatures
for function prologues and epilogues. As an example, Listing 6.2 shows a false
positive in Dyninst due to a misidentified prologue: Dyninst scans for the push
%r15 instruction (as well as several other prologue signatures), missing preceding
instructions in the function. We observe similar cases for function epilogues. For
instance, as shown in Listings 6.3 and 6.4, Dyninst assumes a new function following
a ret; nop instruction sequence. This is not always correct: as shown in the
examples, the same code pattern can result from a multi-exit function with padding
between basic blocks. Note that both examples could be handled correctly by control
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6caf10 <ix86_fp_compare_mode>:

6caf10: mov 0x3f0dde(%rip),%eax

6caf16: and $0x10,%eax

6caf19: cmp $0x1,%eax

6caf1c: sbb %eax,%eax

6caf1e: add $0x3a,%eax

6caf21: retq

Listing 6.1: False negative indirectly called function for IDA Pro in gcc, compiled with gcc at O3

for x64 ELF. Note the lack of a standard prologue.

480970 <autohelperowl_defendpat156>:

480970: push %rbp

480971: push %r15

480973: push %r14

480975: push %rbx

480976: push %rax

Listing 6.2: False positive function (shaded) for Dyninst, due to misapplied prologue signature,

gobmk compiled with clang at O1 for x64 ELF.

8060985: pop %ebx

8060986: pop %esi

8060987: ret

8060988: nop

8060989: lea 0x0(%esi,%eiz,1),%esi

Listing 6.3: False positive function (shaded) for Dyninst, due to code misinterpreted as epilogue,

sphinx compiled with gcc at O2 for x86 ELF. In this case, the instruction at address 0x8060989

is actually a do-nothing instruction emitted for padding.

flow and semantics-aware disassemblers. In Listing 6.4, there are intraprocedural
jumps towards the basic block at 0x46bb50, showing that it is not a new function.
The false positive in Listing 6.3 is in effect a nop instruction, emitted for padding
by gcc on x86.

All false positives we sampled for Hopper are located directly after padding code
(mistakenly interpreted as padding between functions), or after a direct jmp (without
a fallthrough edge), and are not directly reached by other instructions. An example
is shown in Listing 6.5. Since these instructions are never reached directly, Hopper
assumes that they represent function starts. This is not always correct; for instance,
the same pattern frequently results from case blocks belonging to switch statements,
as seen in Listing 6.5.

Similarly, the majority of false positives for IDA Pro are also caused by unreach-
able code assumed to be a new function. However, these cases are far less common
in IDA Pro than in Hopper, as IDA Pro more accurately resolves difficult control
flow constructs such as switches. Interestingly, the false positive rate for IDA Pro
drops to a mean of under 0.3% for x64 Visual Studio 2015. This is because 64-bit
Visual Studio uses just one well-defined calling convention, while other compilers
use a variety [124].



114 CHAPTER 6. AN IN-DEPTH ANALYSIS OF X86/X64 DISASSEMBLY

46b990 <Perl_pp_enterloop>:

[...]

46ba02: ja 46bb50 <Perl_pp_enterloop+0x1c0>

46ba08: mov %rsi,%rdi

46ba0b: shl %cl,%rdi

46ba0e: mov %rdi,%rcx

46ba11: and $0x46,%ecx

46ba14: je 46bb50 <Perl_pp_enterloop+0x1c0>

[...]

46bb47: pop %r12

46bb49: retq

46bb4a: nopw 0x0(%rax,%rax,1)

46bb50: sub $0x90,%rax

Listing 6.4: False positive function (shaded) for Dyninst, due to code misinterpreted as epilogue,

perlbench compiled with gcc at O3 for x64 ELF.

42cec3: movss %xmm0,-0x340(%rbp)

42cecb: jmpq 42cfc8 <P7PriorifyTransitionVector+0x622>

42ced0: mov -0x344(%rbp),%eax

Listing 6.5: False positive function (shaded) for Hopper, due to misclassified switch case block,

hmmer compiled with gcc at O0 for x64 ELF.

Function signatures Of the tested disassemblers, only IDA Pro supports function
signature analysis. Figure 6.1c shows the percentage of non-empty function argu-
ment lists where IDA Pro correctly identified the number of arguments. We focus
on non-empty argument lists because IDA Pro defaults to an empty list, skewing our
results if counted as correct.

Argument recovery is far more accurate on x86 code, where parameters are typi-
cally passed on the stack, than it is on the register-oriented x64 architecture. For x86
code generated by gcc and clang, IDA Pro correctly identifies between 64% and
81% of the argument lists on non-optimized binaries, dropping to 48% in the worst
case at O3. Results for Visual Studio are slightly worse, ranging from 36% worst
case to 59% in the best case. As for function starts, the standard deviation is just
over 15%. On x64 code, IDA Pro recovers almost none of the argument lists, with
accuracy between 0.38% and 1.87%.

Performance is significantly better for binaries with symbols, even on x64, but
only for C++ code. For instance, IDA Pro’s accuracy for gcc x64 increases to a mean
of 44% for C++, peaking at 75% correct argument lists. This is because IDA Pro
parses mangled function names that occur in C++ symbols, which encode signature
information in the function name.

Control Flow Graph accuracy Figure 6.1d presents the accuracy of basic blocks in
the ICFG, the union of all function-level CFGs. We found these results to be repre-
sentative of the per-function CFG accuracy. The accuracy of the ICFG is strongly
correlated with instruction discovery; indeed, recursive disassemblers typically find
instructions through the process of expanding the ICFG itself. Thus, the disassem-
blers that perform well in instruction recovery also perform well in CFG construc-
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tion. For some disassemblers, such as IDA Pro, the basic block true positive rate
at high optimization levels even exceeds the raw instruction recovery results (Fig-
ure 6.1a). This is because for the ICFG, we did not count missing nop instructions
as false negatives.

IDA Pro consistently achieves a basic block recovery rate of between 98–100%,
even at high optimization levels. Even at moderate optimization levels, the results
for Hopper and Dyninst are considerably less complete, regularly dropping to 90%
or less. For the remaining disassemblers, basic block recovery rates of 75% or less
are typical.

All disassemblers except IDA Pro show a considerable drop in accuracy on
gcc and clang for x64, compared to the x86 results. This is strongly correlated
with the diminishing instruction and function detection results for these disassem-
bler/architecture combinations (see Figures 6.1a–6.1b). This implies that when func-
tions are missed, these disassemblers also fail to recover the instructions and basic
blocks contained in the missed functions. In contrast, IDA Pro disassembles instruc-
tions even when it cannot attribute them to any function. The difference between
x86/x64 and C/C++ results is less pronounced for Visual Studio binaries than for
gcc/clang.

Callgraph accuracy Like ICFG accuracy, callgraph accuracy depends strongly on
the completeness of the underlying instruction analysis. As mentioned, the call-
graphs returned by the tested disassemblers contain only the direct call edges, and
do not deal with address-taken functions. For this reason, Figure 6.1e presents re-
sults for the direct component of the callgraph only. We study the impact of indirect
calls on function identification accuracy in our complex case analysis instead (see
Section 6.3.1.3).

The direct callgraph results in Figure 6.1e again show IDA Pro to be the most
accurate at a consistent 99% function call resolve rate (linking function call edges
to function starts), in most cases followed closely by Dyninst and Hopper. This
illustrates that the lower accuracy for function starts (Figure 6.1b) is mainly due to
indirectly called functions (such as those called via function pointers) and tail call
optimizations, as confirmed by our results in Section 6.3.1.2.

6.3.1.2 Server Results

Table 6.1 shows disassembly results for the servers from our test suite. For space
reasons, and because the relative accuracy of the disassemblers is the same as for
SPEC, we only show results for IDA Pro, the best overall disassembler. All other
results are available as part of our data set, as mentioned at the start of Section 6.3.
We compiled all servers for both x86 and x64 with gcc and clang, using their
default Makefile optimization levels.

The server tests confirm that the SPEC results from Section 6.3.1.1 are represen-
tative; all results lie well within the established bounds. As with SPEC, linear dis-
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x86 x64

gcc-5.1.1

nginx 99.9 65.5 49.6 100 100 99.9 59.2 0.9 99.9 100
lighttpd 99.9 99.5 85.9 99.9 100 99.9 99.5 0.0 99.9 100
vsftpd 95.4 93.4 73.6 95.9 99.5 93.0 92.5 4.3 99.9 100

opensshd 99.9 86.2 74.9 100 100 99.9 86.2 0.0 100 100
exim 99.9 90.1 58.2 99.9 100 99.9 89.9 4.5 99.9 100

clang-3.7.0

nginx 98.5 57.5 44.0 99.5 100 98.6 53.0 0.7 99.4 100
lighttpd 98.7 99.5 87.9 99.9 100 99.0 99.5 0.0 99.9 100
vsftpd 96.8 93.3 72.9 99.8 100 97.0 92.0 6.6 99.5 99.9

opensshd 98.9 86.5 78.1 100 100 99.2 86.3 0.0 100 100
exim 99.0 82.7 54.6 99.3 100 99.1 81.7 5.4 99.4 100

Table 6.1: IDA Pro 6.7 disassembly results for server tests (% correct, per test case).

assembly achieved 100% correctness. The nginx results warrant closer inspection;
given its optimization level O1, the function start and argument information is on the
low end of the accuracy spectrum. Closer analysis shows that this results from exten-
sive use in nginx of indirect calls through function pointers; Section 6.3.1.1 shows
that this negatively affects function information. Indeed, for all tested servers, the
accuracy of function start detection is inversely proportional to the ratio of address-
taken functions to the total number of instructions. This shows that coding style
can carry through the compilation process to have a strong effect on disassembler
performance for the resulting binary.

6.3.1.3 Prevalence of Complex Constructs

Figure 6.3 shows the prevalence of complex constructs in SPEC CPU2006, which
pose special disassembly challenges. We also analyzed these constructs in the server
binaries, finding no significantly different results.

We did not encounter any overlapping or shared basic blocks in either the SPEC
or server tests on any compiler. This is surprising, as these constructs are frequently
cited in the literature [31; 106; 125]. Closer inspection showed that all the cited
cases of overlapping blocks are due to constructs which we classify more specifi-
cally, namely overlapping instructions and multi-entry functions. These constructs
are exceedingly rare, and occur almost exclusively in library code (discussed in Sec-
tion 6.3.2.2). This finding fits with the examples seen in the literature, which all stem
from library code, most commonly glibc.

No overlapping instructions occur in Linux application code, and only a handful
in Windows code (with a mean of zero, and a maximum of 3 and 10 instructions
for x86 and x64 Visual Studio, respectively). Multi-entry functions are somewhat
more common. All cases we found consisted of functions with optional basic blocks
that can execute before the main function body, and finish by jumping over the main
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Figure 6.3: Prevalence of complex constructs in SPEC CPU2006 binaries.

function body prologue. Figure 6.3 lists such jumps as multi-entry jumps, and shows
the targeted main function bodies as multi-entry targets. In binaries compiled with
gcc and clang, we found up to 18 multi-entry jumps for C code, and up to 64 for
C++, with the highest prevalence in x64 binaries. Visual Studio produced up to 172
multi-entry jumps for C, and up to 88 for C++, the construct being most prevalent
in x86 code. This kind of multi-entry function is handled well by disassemblers in
practice, producing no notable decrease in disassembly accuracy compared to other
(single-entry) functions.

Tailcalls form the most prevalent complex case, and do negatively affect function
start detection if the target function is never called normally (see Section 6.3.1.1, and
the false negative analysis in Chapter 7). The largest number of tailcalls (listed as
tailcall jumps in Figure 6.3) is found in clang x64 C++ binaries, at a mean of 545
cases. Visual Studio produces a similar number of tailcalls. For clang, the number
of tailcalls peaks at optimization level O1, while Visual Studio peaks at O3. For
clang (and to a lesser extent gcc), higher optimization levels can lead to a decrease
in tailcalls through other modifications like code merging and code elimination.

Jump tables (due to switches) are by far the most common case of inline data.
They occur as inline data only on Visual Studio (gcc and clang place jump tables
in the .rodata section). As seen in Section 6.3.1.1, inline data causes false positive
instructions especially in linear disassembly (peaking at 0.56% false positives).

Another challenge due to jump tables is locating all case blocks belonging to the
switch; these are typically reached indirectly via a jump that loads its target address
from the jump table. Linear disassembly covers 100% of case blocks correctly on
gcc and clang (see Section 6.3.1.1), and also achieves very high accuracy for Vi-
sual Studio. The best performing recursive disassemblers, most notably IDA Pro,
also achieve very high coverage of switch/case blocks; coverage of these blocks
is comparable to the overall instruction/basic block recovery rates. This is because
many recursive disassemblers have special heuristics for identifying and parsing stan-
dard jump tables and the corresponding code patterns.
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gcc-5.1.1 x64

angr 64.4 75.6 — 70.2 87.9
BAP 65.3 79.6 — 72.4 84.8

ByteWeight — 29.3 — — —
Dyninst 79.7 85.2 — 87.6 95.5
Hopper 84.3 93.3 — 90.6 93.9

IDA Pro 96.0 92.0 5.4 99.9 99.9
Linear 99.9 — — — —

Table 6.2: Disassembly results for glibc (% correct).

6.3.1.4 Optimizing for Size

At optimization levels O0–O3, no overlapping or shared basic blocks occur. A rea-
sonable hypothesis is that compilers might more readily produce such blocks when
optimizing for size (optimization level Os) rather than for performance. To verify
this, we recompiled the SPEC C and C++ benchmarks with size optimization, and
repeated our disassembly tests.

Even for size-optimized binaries, we did not find any overlapping or shared
blocks. Moreover, the accuracy of the instruction boundaries, callgraph and ICFG
did not significantly differ from our results for optimization levels O0–O3. Function
starts and argument lists were comparable in precision to those for performance-
optimized binaries (O2–O3).

6.3.2 Shared Library Objects

This section discusses our disassembly results and complex case analysis for li-
brary code. Libraries are often highly optimized, and therefore contain more com-
plex (handcrafted) corner cases than application code. We focus our analysis on
glibc-2.22, the standard C library used in GNU systems, compiled in its default
configuration (gcc with optimization level O2). This is one of the most widespread
and highly optimized libraries, and is often cited as a highly complex case [31; 125].

6.3.2.1 Disassembly Results

Table 6.2 shows disassembly results for glibc-2.22, for all tested disassemblers
that support 64-bit ELF binaries. Nearly all disassemblers display significantly lower
accuracy on instruction boundaries than the mean for application binaries in equiva-
lent compiler configurations. Only IDA Pro and linear disassembly are on par with
their performance on application code, achieving very good accuracy without any
false positives. Note that objdump achieves 99.9% accuracy instead of the usual
100% for ELF binaries. This is because unlike IDA Pro, it does not explicitly sepa-
rate the overlapping instructions that occur in glibc (see Section 6.3.2.2).
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7b05a: cmpl $0x0,%fs:0x18

7b063: je 7b066

7b065: lock cmpxchg %rcx,0x3230fa(%rip)

Listing 6.6: Overlapping instruction in glibc-2.22.

e9a30 <splice>:

e9a30: cmpl $0x0,0x2b9da9(%rip)

e9a37: jne e9a4c <__splice_nocancel+0x13>

e9a39 <__splice_nocancel>:

e9a39: mov %rcx,%r10

e9a3c: mov $0x113,%eax

e9a41: syscall

e9a43: cmp $0xfffffffffffff001,%rax

e9a49: jae e9a7f <__splice_nocancel+0x46>

e9a4b: retq

e9a4c: sub $0x8,%rsp

e9a50: callq f56d0 <__libc_enable_asynccancel>

[...]

Listing 6.7: Multi-entry function in glibc-2.22.

Function start results are on par with, or even exceed the mean for application
binaries; this holds true for all disassemblers. Moreover, the accuracy of function
argument lists (5.4%) is much higher than one would expect from the x64 SPEC
CPU2006 results (under 1% accuracy). This is because IDA Pro comes with a set of
code signatures designed to recognize standard library functions that are statically
linked into binaries.

For the ICFG, we see the same pattern as for instructions: all disassemblers per-
form worse than for application code, while IDA Pro delivers comparable accuracy.
Callgraph accuracy is below the mean for most disassemblers, though IDA Pro and
Dyninst perform very close to the mean, and BAP well exceeds it.

6.3.2.2 Complex Constructs

Overall, we found the glibc-2.22 code to be surprisingly well-behaved. Our
analysis found no overlapping or shared basic blocks, and no inline data. Indeed,
the glibc developers have taken special care to prevent this, explicitly placing data
and jump tables in the .rodata section even when manually declared in handwrit-
ten assembly code. Prior work has analysed earlier versions of glibc, showing
that inline jump tables are present in glibc-2.12 [125]. Moreover, inline zero-
bytes used for function padding are confirmed in versions up to 2.21. This is worth
noting, as older glibc versions may still be encountered in practice. Our anal-
ysis of glibc versions ranging from 2.12 to 2.22 shows consistently improving
disassembler-friendliness over time.

We did find some complex constructs that do not occur in application code,
the most notable being overlapping instructions. We found 31 such instructions in
glibc. All of these are instructions with optional prefixes, such as the one shown in
Listing 6.6. These overlapping instructions are defined manually in handcrafted as-
sembly code, and typically use a conditional jump to optionally skip a lock prefix.
They correspond to frequently cited complex cases in the literature [31; 125].
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gcc-5.1.1 x64 with -static

SPEC/C O0 96.2 69.4 0.1 98.3 98.2
SPEC/C O1 96.2 68.4 0.2 98.6 98.4
SPEC/C O2 95.5 67.1 0.2 98.8 98.9
SPEC/C O3 95.6 65.7 0.2 98.7 98.7
SPEC/C Os 95.9 67.8 0.2 98.7 98.4

gcc-5.1.1 x64 with -static and -flto

SPEC/C O0 96.3 69.3 0.2 98.5 98.3
SPEC/C O1 96.0 68.6 0.3 98.6 98.4
SPEC/C O2 95.0 67.4 0.3 98.3 98.0
SPEC/C O3 95.2 66.9 0.3 98.3 98.4
SPEC/C Os 95.5 67.8 0.2 98.4 97.7

Table 6.3: IDA Pro 6.7 disassembly results for static and link-time optimized SPEC C benchmarks

(% correct, geometric mean).

In addition, we found 508 tailcalls resulting from the compiler’s normal optimiza-
tion; a number comparable to application binaries of similar size as glibc. We also
found significantly more multi-entry functions than in the SPEC benchmarks. Most
of these belong to the _nocancel family, explicitly defined in glibc, an exam-
ple of which is shown in Listing 6.7. These functions provide optional basic blocks
which can be prefixed to the main function body to choose a threadsafe variant of
the function. These prefix blocks end by jumping over the start of the main function
body, a pattern also sometimes seen in application code.

Given that all non-standard complex constructs in glibc are due to handwritten
assembly, we manually analyzed all assembly code in libc++ and libstdc++.
However, the amount of assembly in these libraries is very limited and revealed no
new complex constructs. This suggests that the optimization constructs in glibc

are typical for low-level libraries, and less common in higher-level ones such as the
C++ standard libraries.

6.3.3 Static Linking & Link-time Optimization

Static linking can reduce disassembler performance on application binaries by merg-
ing complex library code into the binary. Link-time optimization performs intermod-
ular optimization at link-time, as opposed to more local compile-time optimizations.
It is a relatively new feature that is gaining in popularity, and could worsen disas-
sembler performance if combined with static linking, by optimizing application and
library code as a whole. To study the effects of these options, we recompiled the
SPEC CPU2006 C benchmarks, statically linking them with glibc-2.22 using
gcc’s -static flag. Subsequently, we repeated the process with both static link-
ing and link-time optimization (gcc’s -flto) enabled.

As expected, static linking merges complex cases from glibc into SPEC, in-
cluding overlapping instructions. The effect on disassembly performance is shown
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in Table 6.3 for IDA, the overall best performing disassembler in our glibc tests.
The impact is slight but noticeable, with an instruction accuracy drop of up to 3 per-
centage points compared to baseline SPEC; about the same as for glibc. As can be
seen in Table 6.3, link-time optimization does not significantly decrease disassembly
accuracy compared to static linking only.

Function start detection suffers from static linking mostly at lower optimization
levels, dropping from a mean of 80% to just under 70% for O0; at level O3 the
performance is not significantly reduced. Again, link-time optimization does not
worsen the situation compared to pure static linking. For the ICFG and callgraph
tests, a small accuracy drop is again seen at lower optimization levels, again with
no more adverse effects due to link-time optimization. For instance, ICFG accuracy
drops from close to 100% mean in baseline SPEC to just over 98% in statically
linked SPEC at O0, while the results at O2 and O3 show no negative impact. We
suspect that this is a result of optimized library code being linked in even at lower
optimization levels. Overall, we do not expect any significant adverse impact on
binary-based research as link-time optimization gains in popularity.

6.4 Implications of Results

This section discusses the implications of our results for three popular directions in
binary-based research, namely: (1) Control-Flow Integrity (CFI), (2) Decompilation,
and (3) Automatic bug search. A detailed comparison of our results to assumptions
in the literature is given in Section 6.5.

6.4.1 Control-Flow Integrity

Control-Flow Integrity (CFI) is currently one of the most popular research directions
in systems security, as shown in Table 6.5. Binary-level CFI typically relies on binary
instrumentation to insert control flow protections [23; 75; 126; 144; 185; 196; 197;
199]. Though a wide variety of CFI solutions has been proposed, most of these have
similar binary analysis requirements, due to their common aim of protecting indirect
jumps, indirect calls, and returns. We structure our discussion around what is needed
to analyze and protect each of these control edge types.

Indirect calls Typically, protecting an indirect call requires instrumenting both
the call site (the call instruction itself, possibly including parameters), and the call
target (the called function). Finding call sites relies mainly on accurate and complete
disassembly of the basic instructions. As shown in Figure 6.1a, these can be recov-
ered with extremely high accuracy, even 100% accuracy for linear disassembly on
gcc and clang binaries. Thus, a binary-level CFI solution is unlikely to encounter
problems analyzing and instrumenting call sites.

For Visual Studio binaries, there is a chance that a small percentage of call sites
may be missed. Depending on the specific CFI solution, it may be possible to detect
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calls from uninstrumented sites in the target function, triggering a runtime error
handling mechanism (see Section 6.5). Since these cases are rare, it is then feasible
to perform more elaborate (slow path) alternative security checks.

The main challenge is to accurately detect all possible target functions for each
indirect call. As a basic prerequisite, this requires finding the complete set of indi-
rectly called functions. As shown in Section 6.3.1.1 and Figure 6.1b, this is one of
the most challenging problems in disassembly—at high optimization levels, 20% or
more of all functions are routinely missed.

Moreover, fine-grained CFI systems must perform even more elaborate analysis
to decide which functions are legal targets for each indirect call site. Overestimating
the set of legal targets leads to attacks which redirect indirect calls to unexpected
functions [88]. Matching call sites to a set of targets typically requires an accurate
(I)CFG, so that control-flow and data-flow analysis can be performed to determine
which function pointers are passed to each call site. Figure 6.1d and Sections 6.3.1.1–
6.3.1.3 show that an accurate and complete ICFG is typically available, including
accurate resolution of switch/jump tables in the best disassemblers. Although this
type of analysis remains extremely challenging, especially if done interprocedurally
(requiring accurate indirect call resolution), it is at least not limited by the accuracy
of basic blocks or direct control edges.

Additionally, fine-grained CFI systems can benefit from function signature in-
formation, to further narrow down the set of targets per call site by matching the
function prototype to parameters passed at the call site [181]. Though signature
information is often far from complete (Figure 6.1c), especially on x64, the informa-
tion which is available can still be useful—even with incomplete information, the
target set can be reduced, directly leading to security improvements. However, care
must be taken to make the analysis as conservative as possible; if this is not done, the
inaccuracy of function signature information can easily cause illegal function calls
to be allowed, or worse, can cause legal calls to be inadvertently blocked.

Indirect jumps Protecting indirect jumps requires analysis similar to the re-
quirements for indirect calls. However, as indirect jumps are typically intraprocedu-
ral, protecting them usually does not rely on function detection. Instead, accurate
switch/jump table resolution is required, which is available in disassemblers like
IDA Pro (Section 6.3.1.3).

Return instructions Return instructions are typically protected using a shadow
stack (as discussed in Chapter 3), which requires instrumenting all call and return
sites (and jumps, to handle tailcalls) [54]. Given the accurate instruction recovery
possible with modern disassemblers (Figure 6.1a), it is possible to accurately and
completely instrument these sites.

Summarizing, the main challenge for modern CFI lies in accurately and com-
pletely protecting indirect call sites. The reasons for this are twofold: (1) Function
detection is one of the most inaccurate primitives (especially for indirectly called
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functions), even in state of the art disassemblers, and (2) It is currently very difficult
to recover rich information, such as function signature information, through disas-
sembly. This makes it extremely challenging to accurately couple indirect call sites
with valid targets.

6.4.2 Decompilation

Instead of translating a binary into assembly instructions, decompilers lift binaries
to a higher-level language, typically (pseudo-)C. Decompilers are typically built on
top of a disassembler, relying heavily on the quality of the disassembly [160; 191].

As most decompilers operate at function granularity, they rely on accurate func-
tion start information. Moreover, they must translate all basic blocks belonging to
a function, requiring knowledge of the function’s CFG. In effect, this requires not
only accurate function start detection, but accurate function boundary detection. As
described in Chapter 7, function boundary detection is even more challenging than
function start detection, as it additionally requires locating the end address of each
function. This is difficult, especially in optimized binaries, where tailcalls often blur
the boundaries between functions (since the jmp instructions used in tailcalls can
easily be mistaken for intraprocedural control transfers).

In addition to function detection, decompilers rely on accurate instruction disas-
sembly, and can also greatly benefit from function signature/type information. More-
over, switch detection is required to correctly attribute all switch case blocks to their
parent function. Finally, callgraph information is useful to understand the connec-
tions between decompiled functions.

The impact of inaccuracies for decompilation is not as severe as for CFI systems,
since decompiled code is typically intended for use in manual reverse engineering
rather than automated analysis. However, disassembly errors can still affect the
decompilation process itself, especially in later passes (such as stack frame analysis
or data type analysis passes) over the raw decompiled function. Such analysis phases,
as well as human reverse engineers, must take into account the high probability of
errors in function boundary and signature information.

6.4.3 Automatic Bug Search

The binary analysis requirements of automatic bug search systems depend on the
type of bug being searched for, and the granularity of the search. In practice, many
such systems operate at the function level, both for ease of analysis, and because it
is a suitable search-granularity for common bugs, such as stack-based bugs [98; 140;
201]. Operating at the function level is also useful for interoperability with other
binary analysis primitives, such as symbolic execution, which are powerful tools for
semantic analysis but do not scale to full binaries [98].

Thus, like decompilation, many automatic bug search systems rely on accurate
function boundary information as well as per-function CFGs. Fortunately, despite
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angr 0 0 0 0 0 0
BAP 2 1 2 1 2 0

ByteWeight 0 0 0 0 0 0
Dyninst 1 1 0 0 1 1
Hopper 0 0 0 0 0 0

IDA Pro 13 11 6 2 11 4
Jakstab 0 0 0 0 0 0

PSI/BinCFI 4 3 3 0 3 2
Linear 2 2 1 0 1 1

Other/Custom 8 7 2 0 6 3

Total 30 25 14 3 24 11

Table 6.4: Primitives/disassemblers used in the literature.

the relatively large inaccuracies in the input information, the output of bug detec-
tion systems tends to degrade gracefully: input inaccuracies may lead to bugs being
missed, but typically do not affect the correctness of the analysis for other parts
of the code. Quantifying the accuracy of the inputs (disassembly, CFG, function
boundaries), as is our goal in this chapter, helps users to determine the expected
output completeness of automatic bug search systems.

6.5 Disassembly in the Literature

Given our disassembly results, we studied recent binary-based research to determine
how well the capabilities of disassemblers match the expectations in the literature.
Our study covers research published between 2013 and 2015 in all top-tier systems
security conferences, namely S&P (Oakland), CCS, NDSS and USENIX Security.
In addition, we cover research published in these same years at RAID and ACSAC,
two other major conferences which are popular targets for such research.

We found 30 papers on binary-based research published in these venues, summa-
rized in Table 6.5. The rest of this section presents aggregated findings to provide a
degree of anonymization for these papers.

Table 6.4 shows the primitives and disassemblers used in these papers. IDA Pro
is by far the most popular, for all primitives; our disassembly results (Section 6.3)
justify this choice. Despite its good accuracy, linear disassembly is among the least
used, even for papers that handle only ELF binaries. This may result from the
widespread belief that inline data causes far more problems than we found.

Instructions are the most often needed primitive, used by 25 of the 30 papers.
It is followed by the CFG (24 papers) and function starts (14 papers). Function
signature information is needed by only 3 of the analyzed papers. One paper used
linear disassembly as a basis for building a CFG and callgraph, and scanning for
function starts.
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First Top-

Title author Venue Year Tier

A Principled Approach for ROP Defense [146] Qiao ACSAC 2015
Binary Code Continent: Finer-Grained Control Flow Integrity (...) [185] Wang ACSAC 2015
Blanket Execution: Dynamic Similarity Testing for Program (...) [84] Egele Sec. 2014 ✓

BYTEWEIGHT: Learning to Recognize Functions in Binary Code [26] Bao Sec. 2014 ✓

CoDisasm: Medium Scale Concatic Disassembly of Self-Modifying (...) [37] Bonfante CCS 2015 ✓

Control Flow and Code Integrity for COTS binaries [200] Zhang ACSAC 2015
Control Flow Integrity for COTS Binaries [199] Zhang Sec. 2013 ✓

Cross-Architecture Bug Search in Binary Executables [140] Pewny S&P 2015 ✓

DUET: Integration of Dynamic and Static Analyses for Malware (...) [99] Hu ACSAC 2013
Dynamic Hooks: Hiding Control Flow Changes within (...) [183] Vogl Sec. 2014 ✓

Hardware-Assisted Fine-Grained Control-Flow Integrity (...) [75] Davi RAID 2015
Heisenbyte: Thwarting Memory Disclosure Attacks using (...) [176] Tang CCS 2015 ✓

High Accuracy Attack Provenance via Binary-based (...) [115] Hyung Lee NDSS 2013 ✓

Improving Accuracy of Static Integer Overflow Detection in Binary [201] Zhang RAID 2015
Leveraging Semantic Signatures for Bug Search in Binary Programs [141] Pewny ACSAC 2014
Native x86 Decompilation Using Semantics-Preserving (...) [160] Schwartz Sec. 2013 ✓

No More Gotos: Decompilation Using Pattern-Independent (...) [191] Yakdan NDSS 2015 ✓

Opaque Control-Flow Integrity [126] Mohan NDSS 2015 ✓

Oxymoron Making Fine-Grained Memory Randomization Practical (...) [24] Backes Sec. 2014 ✓

Practical Context-Sensitive CFI [23] Andriesse CCS 2015 ✓

Practical Control Flow Integrity & Randomization for (...) [197] Zhang S&P 2013 ✓

Reassembleable Disassembling [186] Wang Sec. 2015 ✓

Recognizing Functions in Binaries with Neural Networks [164] Chul Sec. 2015 ✓

ROPecker: A Generic and Practical Approach for Defending (...) [56] Cheng NDSS 2014 ✓

StackArmor: Comprehensive Protection from Stack-based (...) [54] Chen NDSS 2015 ✓

Towards Automated Integrity Protection of C++ Virtual Function (...) [92] Gawlik ACSAC 2014
Towards Automatic Software Lineage Inference [103] Jang Sec. 2013 ✓

vfGuard: Strict Protection for Virtual Function Calls (...) [144] Prakash NDSS 2015 ✓

VTint: Protecting Virtual Function Tables’ Integrity [196] Zhang NDSS 2015 ✓

X-Force: Force-Executing Binary Programs for Security (...) [139] Peng Sec. 2014 ✓

Table 6.5: Set of papers discussed in the literature study.

Table 6.6 provides more details on the properties of the papers we analyzed. We
distinguish between papers that target Windows PE binaries, and those that target
Linux ELF. This is because some complex cases, such as inline data, are more often
generated by Visual Studio, deserving closer attention in Windows papers.

Most papers that support obfuscated binaries target Windows (33% of papers ver-
sus 10% for Linux). This is because obfuscation typically occurs in malware, which
is more prevalent on Windows. Though we do not consider obfuscated binaries in
our tests, it is still interesting to know how many papers target such binaries. Af-
ter all, these papers should pay special attention to disassembly errors and complex
corner cases. Unfortunately, this is not the case; only 50% of papers that support
obfuscation discuss potential errors, while 33% implement error handling. This is
no better than the overall number. Moreover, only 17% of these papers explicitly
discuss complex cases; far below the overall rate for Windows.

Nearly all papers support optimized binaries (90% or more for both Linux and
Windows, overall as well as top-tier). Stripped binaries are supported by an equally
large majority of papers on Windows, and by a slightly smaller majority on Linux.
Curiously, the number of top-tier papers that support stripped binaries on Linux
(70%) is significantly less than the overall number (79%).
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All papers Top-tier
Property Subproperty # % # %

Windows PE x86/x64 (16 papers, 12 top-tier)

Obfuscated code 5 31% 4 33%
Optimized binaries 14 88% 11 92%
Stripped binaries 15 94% 11 92%
Recursive disassembly 16 100% 12 100%
Needs relocation info 2 12% 2 17%
Primitive errors discussed Instructions 5 (13) 38% 5 (9) 56%

Functions 1 (5) 20% 1 (4) 25%
Signatures 0 (2) 0% 0 (2) 0%
Callgraph 4 (5) 80% 4 (5) 80%
CFG 5 (13) 38% 5 (10) 50%

Complex cases discussed 5 31% 5 42%
Primitive errors handled Overestimate 4 25% 4 33%

Underestimate 3 19% 2 17%
Runtime 1 6% 1 8%

Errors are fatal 13 81% 11 92%

Linux ELF x86/x64 (14 papers, 10 top-tier)

Obfuscated code 1 7% 1 10%
Optimized binaries 13 93% 9 90%
Stripped binaries 11 79% 7 70%
Recursive disassembly 12 86% 8 80%
Primitive errors discussed Instructions 6 (12) 50% 6 (9) 67%

Functions 3 (9) 33% 3 (6) 50%
Signatures 1 (1) 100% 1 (1) 100%
Callgraph 2 (6) 33% 2 (4) 50%
CFG 5 (11) 45% 5 (8) 62%

Complex cases discussed 1 7% 1 10%
Primitive errors handled Overestimate 4 29% 3 30%

Underestimate 0 0% 0 0%
Runtime 1 7% 1 10%

Errors are fatal 8 57% 6 60%

Table 6.6: Properties of binary-based papers (number and percentage of papers). Numbers in

parentheses indicate the total number of papers that use this primitive.

The vast majority of papers use recursive disassembly (100% on Windows and
86% on Linux), with IDA Pro being the most popular disassembler. The few papers
that do use linear disassembly are based on objdump, and augment it with a layer of
error correction. Interestingly, these papers claim perfect (100% accurate) or close
to perfect disassembly. As shown in Section 6.3.1.1, this precision on Linux binaries
owes entirely to the core linear disassembly, making any error correction redundant
other than for a few corner cases in library code (and obfuscated code, which these
papers do not consider).

A relatively small percentage of Windows papers use relocation information to
find disassembly starting points. At 17%, this number is slightly higher for top-tier
papers than overall.

Discussion on disassembly errors and complex cases is somewhat lacking in the
analyzed papers. For most primitives on Windows, at best 50% of papers discuss
what happens if the primitive is not recovered perfectly. This number applies to
the top-tier papers; overall, the number is even lower. The number for Linux-based
papers is slightly better, though even here only a small majority of papers devote
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significant attention to potential problems. One would expect more thorough discus-
sion, especially given that between 80% and 90% of Windows papers, and around
60% of Linux papers, may suffer malignant failures given imperfect primitives. The
issue is most apparent in the Windows papers that require function start information.
Only 25% of the top-tier papers that require function starts consider potential errors
in this information, even though Section 6.3.1.1 shows that function starts are quite
challenging to recover accurately.

The percentage of Windows papers that discuss complex cases such as inline data
varies from 31% overall to 42% for top-tier papers. Again, this is less than we would
expect given the prevalence of inline jump tables generated by Visual Studio. The
number for papers that target Linux is even lower, though this causes fewer issues as
complex cases in ELF binaries are rare.

There is a strong correlation within all papers between discussion of errors and
complex cases, and support for error handling. Papers that discuss such cases also
tend to implement some mechanism for dealing with errors if they occur. Conversely,
papers that do not implement error handling nearly always fail to discuss potential
errors at all.

We identified three popular and recurring categories of error handling mecha-
nisms used in the literature (discussed in more detail in the Discussion at the end of
Part I of this thesis).

(1) Overestimation: For instance, CFG and callgraph overestimation are popu-
lar in papers that build binary-level security; it minimizes the risk of accidentally
prohibiting valid edges, though the precision of security policies may suffer slightly.

(2) Underestimation: This is used in papers where soundness is more important
than completeness.

(3) Runtime augmentation: Some papers use static analysis to approximate a
primitive, and use low-cost runtime checks to fix errors in the primitive where needed.

Overestimation is the most popular error handling strategy, used in around 30%
of top-tier papers. It is followed by underestimation and runtime augmentation.

6.6 Discussion

Our findings show a dualism in the stance on disassembly in the literature. On
the one hand, the difficulty of pure (instruction-level) disassembly is often exagger-
ated. The prevalence of complex constructs like overlapping basic blocks, inline
data, and overlapping instructions is frequently overestimated, especially for gcc
and clang [31; 125]. This leads reviewers and researchers to underestimate the
effectiveness of binary-based research.

We showed that unless binaries are deliberately obfuscated, instruction recovery
is extremely accurate, especially in ELF binaries generated with gcc or clang.
We did not find any inline data for these binaries, even in optimized library code;
even jump tables are explicitly placed in the .rodata section. Moreover, in Visual
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Studio binaries with jump tables in the code section, modern disassemblers like IDA
Pro recognize and resolve them quite accurately. The rare overlapping instructions in
handcrafted library code take on a limited number of forms, typically using a direct
conditional jump over a prefix. These are resolved without problems by IDA Pro and
Dyninst, among others. The same is true for multi-entry functions, which are also
rare. Moreover, overlapping/shared basic blocks (commonly cited as particularly
challenging for binary analysis), do not appear in our findings at all.

On the other hand, some primitives really do often suffer from inaccuracies.
Some recursive disassemblers used for binary instrumentation (notably Dyninst) reg-
ularly miss up to 10% of basic blocks in optimized binaries, calling for special atten-
tion in systems which rely on basic block-level binary instrumentation. Additionally,
function signatures in 64-bit code are extremely inaccurate; fortunately, they are also
rarely used in the literature.

However, function starts are regularly needed, though the false negative rate reg-
ularly rises to 20% or more even for the best performing disassemblers. This is
especially true in optimized binaries, or in coding styles that make extensive use
of function pointers. Worse, false positive function starts are almost as common.
This can lead to problems in some binary-based research, especially binary instru-
mentation, if care is not taken to ensure graceful failure in the event of misdetected
function starts. Symbols offer a great deal of help, especially in reducing the false
negative rate. Unfortunately, they are rarely available in practice.

It is surprising then, to find that only 20% to 25% (top-tier) of Windows papers
that use function starts, and 33% to 50% (top-tier) of the Linux papers, devote any
attention to discussing these problems. A similarly small number of papers imple-
ment error handling, even though errors can cause malignant failures in a majority
of papers. While it is not impossible to base well-functioning binary-based sys-
tems on function start information (or other primitives), it is crucial that such work
implement mechanisms for handling inaccuracies. Three effective classes of error
handling (depending on the situation) are already used in the literature: overestima-
tion, underestimation, and runtime augmentation. We provide a detailed overview
of error handling strategies in the Discussion at the end of Part I of this thesis.

We hope our study will facilitate a better match between expectations on disas-
sembly in future research, and the performance actually delivered by modern disas-
semblers. We believe our findings can be used to better judge where problems are to
be expected, and to implement effective mechanisms for dealing with them.

6.7 Related Work

Prior work on disassembly precision focused on complex corner cases [31; 125; 135]
or obfuscated code [110; 161], showing that these can strongly reduce disassembly
accuracy. We focus instead on the performance of modern disassemblers given real-
istic full-scale binaries without active anti-disassembly techniques.
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Miller et al. center their analysis around complex cases in glibc-2.12 [125].
Their findings largely correspond to our own, though we found no inline jump tables
in glibc-2.22. In addition to their glibc analysis, Miller et al. find complex
cases in SPEC CPU2006; however, this analysis focuses exclusively on statically
linked binaries. We show in Section 6.3.3 that these cases are entirely due to embed-
ded library code, and are extremely rare in non-statically linked applications.

Our finding that function starts are among the most challenging primitives to
recover is in agreement with results by Bao et al. [26].

Paleari et al. study instruction decoders used in disassemblers [135], which parse
individual x86 instructions. Specific instructions that are sometimes wrongly parsed
have also been outlined by the authors of Capstone [147].

Complex constructs in obfuscated code are discussed by Schwarz et al. [161],
Linn et al. [118] and Kruegel et al. [110]. We show that these worst-case complex
constructs are exceedingly rare in non-obfuscated code.

6.8 Conclusion

Our study contradicts the widespread belief that complex constructs severely limit
the usefulness of binary-based research. In contrast, we show that modern disassem-
blers achieve close to 100% instruction disassembly accuracy for compiler-generated
binaries, and that constructs like inline data and overlapping code are very rare. Er-
rors in areas where disassembly is truly lacking, such as function start recovery, are
not discussed nearly as often in the literature. By analyzing discrepancies between
disassembler capabilities and the literature, our work provides a foundation for guid-
ing future research.
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Chapter 7

Compiler-Agnostic Function

Detection in Binaries

We propose Nucleus, a novel function detection algorithm for binaries. In contrast to
existing approaches, Nucleus is compiler-agnostic, and does not require any learning
phase or signature information. Instead of scanning for signatures, Nucleus detects
functions at the Control Flow Graph-level, making it inherently suitable for difficult
cases such as non-contiguous or multi-entry functions. We evaluate Nucleus on
a diverse set of 476 C and C++ binaries, compiled with gcc, clang and Visual
Studio for x86 and x64, at optimization levels O0–O3. We achieve consistently
good performance, with a mean F-score of 0.95.

7.1 Introduction

Function detection is a binary analysis technique that categorizes the code within
a binary into functions approximating the original (source-level) functions. It is
a key building block in areas like binary instrumentation [31; 114], binary-level
vulnerability search [86; 140], and binary protection schemes, including Control-
Flow Integrity [23; 54; 144; 197]. Moreover, accurate function detection is crucial
for human reverse engineers, who rely on such compartmentalization to aid their
reasoning about complex binary code.

We have shown in Chapter 6 that while modern disassemblers and binary analy-
sis platforms achieve high accuracy in terms of instruction recovery, their function
detection capabilities are still lacking [22]. For instance, for stripped x64 ELF bina-
ries generated with the common gcc compiler, our results show that the prominent
IDA Pro disassembler misidentifies 25% to 40% (depending on optimization level)
of functions on average, and up to 75% in the worst case. Moreover, up to 20% of
the reported functions are false positives. Other disassemblers, such as Dyninst [31]
and BAP [44], deliver comparable or worse performance.

131
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The predominant approach to the function detection problem is to use a signature
database to scan binaries for known function prologues and epilogues. This approach
is used even in state-of-the-art work like ByteWeight, which uses machine learning
to automatically generate signatures [26; 164]. While signature-based function de-
tection can achieve reasonable accuracy for unoptimized binaries, its performance
declines steeply for highly optimized binaries, where standard function prologues
are often missing altogether. Moreover, signature databases require constant mainte-
nance, to support new compilers and compiler versions.

This chapter proposes a new signature-less approach to function detection for
stripped binaries, based on structural Control Flow Graph analysis. We provide an
open-source implementation of our approach, called Nucleus.1 Rather than scanning
binaries for signatures, Nucleus is centered around an Interprocedural Control Flow
Graph (ICFG), which it constructs by disassembling a binary and analyzing its con-
trol flow. Nucleus identifies functions in the ICFG by analyzing the flows between
basic blocks, based on our observation that intraprocedural control flow tends to use
different types and patterns of control flow instructions than interprocedural control
flow. We show that this property holds across different compilers and optimization
levels, allowing Nucleus to identify functions in a completely compiler-agnostic way,
without any compiler-specific signatures or heuristics. Nucleus also inherently sup-
ports difficult cases like non-contiguous and multi-entry functions. Nucleus can ex-
port its results directly to the popular IDA Pro disassembler, making it easy to use in
real-world scenarios.

We evaluate Nucleus on a diverse set of 476 binaries, which includes binaries
compiled with gcc, clang and Visual Studio for both Linux (ELF) and Windows
(PE). Our evaluation covers both C and C++ code, compiled for x86 (32-bit) and x64
(64-bit), at optimization levels ranging from O0 to O3. Nucleus achieves mean preci-
sion and recall rates of 0.96 and 0.94, respectively; consistently outperforming IDA
Pro and Dyninst, and matching the reported accuracy of state-of-the-art machine
learning-based work [26; 164].

Further, our evaluation reveals a significant discrepancy between the accuracy
reported for these machine learning approaches (specifically ByteWeight [26]), and
the results they deliver in our tests. Upon closer analysis, we find a large overlap
between the training set and test set used to evaluate all top-tier work on machine
learning for function detection, including ByteWeight [26; 164]. We show that this
leads to a large bias in the evaluations for these papers, underlining the need for
future work to reassess the viability of machine learning for function detection.

Contributions Our contributions in this chapter are as follows.

• We introduce Nucleus, a novel compiler-agnostic function detection engine,
and show that it achieves high accuracy for all major compilers and platforms,

1Source available at https://www.vusec.net/projects/function-detection.

https://www.vusec.net/projects/function-detection
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without requiring any of the compiler-specific signatures used by current state-
of-the-art algorithms. Nucleus is open source, and is easy to use in real-world
environments due to its ability to integrate with IDA Pro, the de facto industry-
standard disassembler.

• In contrast to prior work, Nucleus can support new compilers without any train-
ing or maintenance. Moreover, Nucleus provides inherent support for difficult
cases, such as non-contiguous and multi-entry functions, without assuming
anything about the memory or instruction layout of functions.

• We find a strong bias in the evaluations of top-tier work on machine learning-
based function detection, demonstrating that these techniques need to be re-
assessed before the accuracy reported in their evaluations can be assumed to
generalize to other data sets.

7.2 Background

This section provides a brief introduction to function detection. We discuss the def-
inition and scope of the function detection problem, as well as challenging cases
which need to be handled.

7.2.1 Definition of Function Detection

Function detection comprises two main problems: function start detection, and func-

tion boundary detection. In function start detection, the aim is to find all addresses in
a binary that correspond to a function entry point, while function boundary detection
attempts to find both the first and last address of each function. Our definitions of
these are analogous to the definitions by Bao et al. [26].

We use these definitions to compare Nucleus to existing approaches in our evalu-
ation (Section 7.5). However, Nucleus is not limited to detecting only function start
and end addresses; as discussed in Section 7.3, Nucleus assigns all basic blocks to
their containing functions.

Function start detection Given a binary P compiled from a set of source-level
functions F := {f1, f2, . . . , fm}, identify a set of addresses S := {s1, s2, . . . , sn}

in P such that si points to the machine instruction corresponding to the first line
(entry point) of some fj ∈ F . Note that for stripped binaries, F is not known to
the function detector. Given a set of ground truth start addresses Sgt, we define the
set of true positives as TP := S ∩ Sgt, false positives as FP := S \ Sgt and false
negatives as FN := Sgt \ S.

Function boundary detection Given the same binary P compiled from functions
in F , identify a set of address pairs B := {(s1, e1), (s2, e2), . . . , (sn, en)} in P
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such that si is the function start address of fj ∈ F and ei is the last address in P

corresponding to a line from fj . Given again a set of ground truth function bound-
aries Bgt, we define the set of true positives as TP := B ∩ Bgt, false positives as
FP := {(s, e) | (s, e) ∈ B ∧ s /∈ Sgt}, and false negatives as FN := Bgt \B. Note
that this implies that for TP , both the function start and end address must be correct;
if either is incorrect this counts for FN .

7.2.2 Scope of Function Detection

For binaries with symbolic information, function detection is trivial—the symbol ta-
ble specifies the set of functions, along with their names, start addresses, and sizes.
Unfortunately, many binaries in practice are stripped of this information. This makes
function detection far more challenging—source-level functions have no real mean-
ing at the binary level, and their boundaries are frequently blurred by compiler opti-
mizations. Nucleus, like other work on function detection [26; 31; 83; 164], focuses
on stripped binaries.

Though challenging, function detection in stripped binaries is important in vir-
tually all forms of binary reverse engineering. Human reverse engineers often deal
with stripped binaries, especially in malware analysis or security auditing of un-
trusted binaries [83; 151]. Decompilers attempt to facilitate human reverse engineer-
ing by deriving a high-level code representation from binaries, also operating at the
function level [160; 191].

Automated reverse engineering and binary instrumentation systems also rely
on accurate function detection for stripped binaries, such as legacy binaries or bi-
naries for embedded systems (which are often stripped to save memory). For in-
stance, Control Flow Integrity mechanisms often reason about security at the func-
tion level [23; 144; 197]. Moreover, automated bug detection systems [86; 140] and
binary-level reoptimizers also commonly reason at the function level [108].

7.2.3 Signature-Based Approaches

The predominant strategy for function detection is based on signatures. This strategy
is used in all well-known approaches, including IDA Pro [83], Dyninst [31] and
machine learning approaches like ByteWeight [26; 164].

Typically, signature-based function detection algorithms start with a pass over
the disassembled binary to locate trivial functions that are directly addressed by a
call instruction. To locate the remaining functions (such as indirectly called or
tailcalled functions), these approaches scan for well-known signatures that indicate
function prologues and epilogues. For instance, a typical pattern that many x86 com-
pilers emit for unoptimized functions starts with the prologue push ebp; mov

ebp,esp, and ends with the epilogue leave; ret. In practice, many patterns
are used, depending on the platform, compiler, and optimization level. Indeed, opti-
mized functions may not have well-known function prologues or epilogues at all.
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This wide variety of function patterns and calling conventions is a major problem
for the scalability of signature-based function detection. Signature databases need
to account for all these possibilities, and need constant maintenance to account for
new platforms, compilers and compiler versions. Recent work by Bao et al. [26] and
Shin et al. [164] has focused on automating the process of learning new function
signatures. However, these approaches still require signatures tuned for specific
compilers and an expensive learning phase for every configuration change. The
scalability problems are especially apparent for open-source projects like GNU gcc

and llvm/clang, which release new major versions roughly every six months, and
minor versions with even higher frequency.2,3

7.2.4 Challenging Cases

We distinguish several constructs which are challenging for function detection. Typ-
ically, these result from compiler optimizations.

We consider the following cases (introduced in Chapter 2.7): (1) Non-contiguous
functions, (2) Multi-entry functions, (3) Padding code and inline data, (4) Unreach-
able code, (5) Tail calls, and (6) Alternative prologues/epilogues. Nucleus naturally
handles most of these cases, though tail calls require a degree of dedicated handling
(as we discuss in Section 7.5.3).

Sections 7.3–7.7 provide real-world examples of complex cases, and discuss how
Nucleus handles them. We also provide a detailed discussion of cases which are not
handled by Nucleus in Section 7.5.3.

7.3 Nucleus Overview

This section provides a high-level overview of our function detection algorithm. Im-
plementation details are provided in Section 7.4. The main steps of our algorithm
are illustrated in Figure 7.1.

Though our approach is conceptually simple, we show in Section 7.5 that it is
able to detect both function starts and function boundaries with very high accuracy.
Moreover, our evaluation shows consistently good results across multiple instruc-
tion sets, compilers and platforms, without requiring any compiler-specific heuris-
tics. Additionally, in contrast to signature-based approaches, our analysis yields the
complete set of basic blocks belonging to each function, rather than only a start and
end address.

7.3.1 ICFG Generation

We start by generating the Interprocedural Control Flow Graph (ICFG) around which
the rest of our analysis is centered (step 1© in Figure 7.1). The ICFG for a binary

2https://gcc.gnu.org/releases.html
3http://llvm.org/releases/

https://gcc.gnu.org/releases.html
http://llvm.org/releases/
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Figure 7.1: Overview of our function detection algorithm. 1© Disassemble binary and generate

ICFG. 2© Hide edges e ∈ Ecall. 3© Locate directly called entry points (shaded blue) and expand

functions by following control flow (ignoring direction). 4© Find remaining functions through con-

nected components analysis and detect entry points through intraprocedural control flow analysis.

B is a digraph G = (V,E), where V is the set of all basic blocks in B, and E

is the set of control flow edges E ⊆ V × V between basic blocks. E includes
both intraprocedural and interprocedural edges (such as call edges). In contrast,
the traditional definition of a (non-interprocedural) Control Flow Graph (CFG) is a
function-level data structure that contains only the basic blocks and edges within a
particular function. We operate on the ICFG because it can be generated without a

priori knowledge of function boundaries. We generate the ICFG by disassembling
the target binary, dividing it into basic blocks, and analyzing its control flow (see
Section 7.4 for details).

To improve the accuracy of our analysis, we perform some preprocessing on
the ICFG. Specifically, we use switch detection to resolve intraprocedural indirect
jumps, and we use a combination of semantic analysis and reachability analysis to
identify padding blocks and inline data. More details on our preprocessing algorithm
are given in Section 7.4.
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7.3.2 Connected Components Analysis

Next, we perform a weakly connected components analysis on the ICFG, temporar-
ily excluding the call edges e ∈ Ecall (step 2©). A weakly connected component
is a subgraph of the ICFG, in which every two vertices are connected by an undi-
rected path (i.e., ignoring the direction of control flow), and no vertex is connected
to a vertex outside the component. By excluding call edges, the analysis finds all
graph components that consist of basic blocks connected through only intraprocedu-
ral edges (some corner cases do exist; these are discussed in Section 7.5.3). In other
words, we use the connected components analysis to find clusters of basic blocks
belonging to the same function.

Note that this approach assumes nothing about the memory layout of functions,
providing natural support for non-contiguous functions. Moreover, it does not re-
quire any kind of function prologue or epilogue detection, making our approach
completely compiler agnostic. Our connected components analysis consists of sev-
eral phases, as follows.

7.3.2.1 Directly Called Functions

First, we make a pass over the instructions of all basic blocks in the ICFG, scanning
for direct call instructions. This allows us to detect the directly called function
entry blocks, which we each expand into a complete function by following the edges
from the entry block until a complete component is formed (step 3©). This phase
detects all components corresponding to directly called functions.

7.3.2.2 Unreachable/Indirectly Called Functions

Next, we find indirectly called or unreachable functions by iterating over all basic
blocks in the ICFG, looking for BBs that are not yet part of a function (step 4©).
We expand each such block into a function using the aforementioned connected
components analysis. Subsequently, we detect the function entry points by scanning
the function for BBs that are not reached by any intraprocedural edge. (In practice,
there may be loopback edges to an entry block; we describe our approach to dealing
with these in Section 7.4.) We perform the same entry point analysis for the directly
called functions, to detect possible multi-entry functions. If no suitable entry point
can be found through other methods, our analysis assumes the function is entered at
its lowest address (the default assumption in signature-based approaches).

7.4 Implementation

We implemented an open-source version of our function detection algorithm, called
Nucleus, in 3278 C++ SLOC. The ICFG construction and function detection code
consists of under 850 SLOC, while the remaining lines are attributed to our binary
loader, disassembler, and utility code. We implemented a custom disassembly pass



138 CHAPTER 7. COMPILER-AGNOSTIC FUNCTION DETECTION IN BINARIES

mov eax,eax

xchg eax,eax

lea eax,[eax + 0x0]

lea eax,[eax + eiz*1 + 0x0]

Listing 7.1: Effective nop instructions emitted by gcc v5.1.1 on x86. Here, eax can be replaced

by any general purpose register.

using Capstone v3.0.4 [147]. Nucleus provides the option to generate an IDA Python
script that imports our function detection results directly into IDA Pro.

7.4.1 Disassembly and ICFG Generation

To find indirectly called and unreachable functions, we use a linear disassembly
approach, coupled with an analysis to detect padding code and inline data. Recent
work has shown that linear disassembly, even with only simple detection of padding
or data, can reliably achieve high code coverage with few disassembly errors [22].
After disassembly completes, Nucleus constructs the ICFG by breaking the code into
BBs, and creating the edges associated with each control flow instruction.

We then analyze each BB to see if it consists of do-nothing instructions used
for padding. Simply checking for nop instructions is not enough, because not all
compilers emit standard nop instructions. We therefore also check for instructions
which move a source operand into a destination operand without modifying it. List-
ing 7.1 shows examples of this, used for padding by gcc v5.1.1 on x86.

Moreover, we use reachability analysis to determine if a nop block is part of a
function (reachable via some control flow edge), or is padding (not reachable). We
detect inline data by looking for BBs that contain invalid or privileged instructions.
These blocks, and any BBs that can reach them via a jump or fallthrough edge, are
marked as suspected data.

7.4.2 Switch Detection

Compilers typically implement switch statements as an indirect jump that selects its
target from a jump table of code pointers, depending on which case should be exe-
cuted. To correctly attribute all switch/case blocks to their associated function, we
need to resolve these intraprocedural indirect jumps. Nucleus therefore implements
a switch detection pass that performs a backward sweep starting from every indirect
jump, looking for the instruction where the jump’s target register is loaded. If this
load instruction references a jump table, we scan this table for valid code pointers,
adding these as targets of the indirect jump. More sophisticated switch detection is
explored in related work [83; 106; 161], but is outside the scope of this work.

7.4.3 Function and Entry Point Detection

After ICFG generation is complete, we execute our connected components-based
function detection algorithm as described in Section 7.3. As noted in Section 7.3,
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we implement several ways of detecting function entry points (in order of priority):
(1) by following direct call edges, (2) using intraprocedural control flow analysis,
and (3) by assuming the function’s lowest address as the entry point (as a last resort).

The intraprocedural control flow analysis detects function entry points by look-
ing for basic blocks that are not reached by any intraprocedural edge. However, we
must also deal with entry blocks which do have incoming loopback edges. Such en-
try blocks can be identified in two ways: (1) Loopback edges typically target not the
start of an entry block, but jump to an offset within it (skipping past the function pro-
logue). Because Nucleus tracks the destination offset of each edge, we can identify
these cases. (2) Alternatively, we use intraprocedural loop detection to determine
that the entry block is reached only via a loopback edge (while the source of the
loopback edge is also reached by other inbound control flow edges).

7.5 Evaluation

In this section, we evaluate four key aspects of Nucleus. (1) How accurate is our
function detection compared to existing work? (2) Does Nucleus achieve more stable
cross-compiler/cross-architecture results than other approaches? (3) Which cases
are handled well by Nucleus, and which cause false positives or false negatives? (4)
How does the runtime performance of Nucleus compare to other approaches? We
first describe our test setup, and then address these questions.

7.5.1 Test Setup

We evaluate Nucleus on a test suite consisting of 476 C and C++ binaries for x86
and x64—the most commonly targeted platforms in binary analysis research. Our
test suite contains both Linux (ELF) and Windows (PE) binaries, compiled at opti-
mization levels O0–O3. The ELF binaries are compiled with the popular gcc v5.1.1
and clang v3.7.0 compilers, while the PE binaries are compiled with Visual Studio
2015—these are the most recent versions at the time of our experiments. All of the
binaries are stripped of any symbolic information.

Our test suite contains the SPEC CPU2006 C and C++ benchmarks, as well as the
popular server applications nginx v1.8.0, lighttpd v1.4.39, opensshd v7.1p2,
vsftpd v3.0.3 and exim v4.86. We choose this test suite for the following reasons:
(1) It contains a diverse range of realistic C and C++ binaries, ranging from very small
to large; (2) By testing with C and C++, as well x86 and x64 binaries, we cover a
wide range of both stack-based and register-based calling conventions; (3) The tested
binaries contain a wide variety of challenging cases—for instance, perlbench
contains many indirect function calls; (4) SPEC CPU2006 compiles on both Linux
and Windows, allowing a fair comparison between gcc, clang, and Visual Studio.

We obtain ground truth on function starts and function boundaries by compiling
the ELF binaries with full symbolic and DWARF v3 information, and the PE bina-
ries with full PDB (Program Database) files. After parsing the required function
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information from these sources, we strip the binaries of all symbolic information
before using them in our experiments.

We conduct our experiments on an Intel Core i5 4300U machine with 8GB of
RAM, running Ubuntu 15.04. We compile our gcc and clang test cases on this
same machine. The Visual Studio binaries are compiled on an Intel Core i7 3770
machine with 8GB of RAM, running Windows 10.

We compare Nucleus with IDA Pro v6.7, Dyninst v9.1.0 [31], and BAP v0.9.9 [44],
which uses ByteWeight v0.9.9 [26] to obtain function start information. We choose
these tools because they are capable of delivering both function start and function
boundary information, are widely used, and are also used as a reference in the eval-
uations of related work [26]. Moreover, in Section 7.6, we provide a more detailed
comparison with the results yielded by state-of-the-art machine learning-based ap-
proaches, including ByteWeight [26] and Shin et al. [164].

7.5.2 Function Detection Results

We report our experimental results using the F-score metric, and the related notions
of precision and recall. The F-score is widely used (also in related work [26; 164])
because it provides a combined metric of the true positive, false positive and false
negative rates of a system. Precision is defined as p = |TP | / (|TP | + |FP | ), while
recall is defined as r = |TP | / (|TP | + |FN | ). For us, p = 1.0 means that all
reported functions are true positives (no false positives), while r = 1.0 means that
there are no false negatives. The F-score is the harmonic mean of precision and
recall: F = 2 · p · r/ (p+ r). The range of the F-score is again [0.0, 1.0], with
F = 1.0 denoting perfect accuracy (no false positives or false negatives).

In our Linux-based testing environment, Dyninst was unable to process PE bina-
ries. We therefore report only ELF results for Dyninst. As our server applications
are Linux-specific, we test them only for gcc and clang.

7.5.2.1 Function Starts

We begin by discussing results for function start detection; results for function bound-
ary detection are discussed in Section 7.5.2.2. Figure 7.2 shows the F-scores achieved
by Nucleus and the other approaches per platform (x86 versus x64), compiler, and
optimization level, differentiating between the C and C++ tests. For each case, the
graph shows the geometric mean result achieved for SPEC CPU2006. Additionally,
Table 7.1 shows the decomposition of the F-scores into precision and recall rates, for
both the SPEC and server tests. For space reasons, Table 7.1 shows average scores
taken over the geometric means for all optimization levels.

Figure 7.2 shows that Nucleus achieves accurate results across all compilers, plat-
forms and optimization levels. We achieve an overall average F-score for SPEC of
0.96, ranging between 0.92 (O3) and a perfect F-score of 1.00 (O0) for the C tests,
and between 0.87 and 0.99 for C++. As shown in Table 7.1, Nucleus consistently
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Figure 7.2: F-scores for function start detection (geometric mean for SPEC CPU2006).

outperforms all other disassemblers, especially in terms of recall, with the exception
of Visual Studio on x64. Although Nucleus delivers accurate results for Visual Stu-
dio x64, IDA Pro is the most accurate for this compiler, with an average F-score of
0.97. This is due to the fact that for x64, Visual Studio 2015 uses only one calling
convention [124], making IDA Pro’s signature-based approach extremely effective.
In contrast, other compilers use a variety of calling conventions.

As can be seen in Figure 7.2, Nucleus is more tolerant of varying compilers
and optimization levels than other approaches, since Nucleus is compiler-agnostic.
Nucleus shows stable accuracy across compilers and architectures, and the decrease
in accuracy for high optimization levels is far less significant than for all other tested
tools. In Section 7.5.3, we provide a detailed discussion of the more challenging
cases which occur in optimized binaries.

The standard deviations in F-score for Nucleus are limited to the range [0.01, 0.04]
for C, and [0.00, 0.07] for C++. In contrast, the ranges for IDA Pro are [0.00, 0.13] for
C (deviations below 0.11 only for Visual Studio), and [0.00, 0.19] for C++. Dyninst
ranges from [0.01, 0.14] for C to [0.01, 0.16] for C++, while BAP/ByteWeight ranges
from [0.04, 0.16] to [0.02, 0.26], respectively. Again, this shows that Nucleus pro-
vides accurate results more consistently than signature-based approaches.

The results shown for ByteWeight are based on the ByteWeight version shipped
with BAP v0.9.9, which we refer to as BAP/ByteWeight v0.9.9 (BAP/BW for short).
BAP uses ByteWeight to detect function starts, which it uses as entry points for
disassembly. We tested BAP/Byteweight with the default ELF/PE signatures that
are included with it. In our tests, this yielded significantly lower accuracy than the
other approaches, with an overall mean F-score of only 0.65, which is 0.32 points
lower than reported in the Byteweight paper [26]. Results for the server tests (which
do not include C++ binaries) are more accurate, at a mean F-score of 0.75, but this is
still 0.22 points lower than expected. Note that for BAP/ByteWeight, we excluded
xalancbmk at O3 from the tests because of scalability issues (see Section 7.5.4).

To investigate this discrepancy more closely, we requested the trained version of
ByteWeight used in the original paper from the authors. Unfortunately, the authors
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gcc x86 gcc x64 clang x86 clang x64 VS x86 VS x64

IDA Pro 6.7 0.98/0.78 0.97/0.74 0.98/0.78 0.98/0.77 0.84/0.93 1.00/0.94
BAP/BW 0.9.9 0.68/0.83 0.70/0.66 0.52/0.71 0.73/0.49 0.63/0.74 0.69/0.56
Dyninst 9.1.0 0.93/0.91 0.96/0.74 0.98/0.95 0.88/0.72 — —
Nucleus 0.98/0.96 0.98/0.96 0.96/0.97 0.96/0.95 0.86/0.96 0.95/0.94

∆Nucleus +0.00/+0.05 +0.01/+0.22 −0.02/+0.02 −0.02/+0.18 +0.02/+0.03 −0.05/+0.00

(a) SPEC CPU2006 (all binaries, optimization levels O0–O3)

gcc x86 gcc x64 clang x86 clang x64

IDA Pro 6.7 0.93/0.88 0.92/0.86 0.93/0.85 0.91/0.84
BAP/BW 0.9.9 0.71/0.91 0.78/0.86 0.57/0.84 0.79/0.65
Dyninst 9.1.0 0.91/0.96 0.92/0.85 0.93/0.97 0.87/0.85
Nucleus 0.98/0.98 0.98/0.97 0.99/0.99 0.99/0.96

∆Nucleus +0.05/+0.02 +0.06/+0.11 +0.06/+0.02 +0.08/+0.11

(b) Servers (C only, tested at per-server default optimization ranging from O0–O2)

Table 7.1: Precision/recall for function start detection (average geometric mean). ∆Nucleus shows

the improvement in Nucleus over other approaches.

replied that only an untrained version is still available. Given the uncertainties in
attempting to exactly reproduce the training used in the ByteWeight paper, we in-
stead performed a detailed analysis of the difference between our test suite, and the
tests used in the ByteWeight paper. This analysis, which we discuss in Section 7.6,
shows a significant overlap between the training set and test set used in the origi-
nal ByteWeight evaluation. We show that this overlap causes a significant bias in
evaluation results, which we believe is responsible for the accuracy discrepancy we
observe. This is worrying, because the ByteWeight test suite has since been used to
evaluate all top-tier work on function detection through machine learning.

7.5.2.2 Function Boundaries

Figure 7.3 and Table 7.2 show our results for function boundary detection. Recall
from Section 7.2 that in contrast to function start detection, which only finds the
first address of each function, function boundary detection involves finding both
the first and the last address. As discussed in Section 7.3, Nucleus finds not only
function boundaries, but all basic blocks belonging to each function. Nevertheless,
for comparability with the results of other approaches, we measured our results for
Nucleus by taking the lowest and highest address found for each function.

As before, Figure 7.3 graphs the F-scores achieved for SPEC CPU2006 in var-
ious configurations, while Table 7.2 decomposes these F-scores into precision and
recall, and additionally shows results for our server tests. Again, Nucleus consis-
tently outperforms other approaches, with the exception of IDA Pro on Visual Stu-
dio x64. (As discussed in Section 7.5.2.1, this is because Visual Studio uses only
one calling convention on x64.) Nucleus achieves an overall mean F-score of 0.90
for the SPEC CPU2006 tests, while IDA Pro (the best performing alternative) yields
a mean F-score of only 0.84, even including its extremely good results for Visual
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Figure 7.3: F-scores for function boundary detection (geometric mean for SPEC CPU2006).

Studio x64. For our server tests (which do not include C++ code), Nucleus achieves
an even higher overall mean F-score of 0.97.

In addition, the standard deviations in F-score for Nucleus are lower than those
for other approaches, meaning that Nucleus provides more predictable accuracy. Nu-

cleus achieves an average standard deviation of only 0.02 for C, and 0.04 for C++.
In contrast, IDA Pro, the best performing other approach, has an average standard
deviation of 0.10 for C, and 0.11 for C++. Moreover, Figure 7.3 shows that Nucleus

again achieves more stable results across compilers and architectures than other ap-
proaches, while better retaining its accuracy for highly optimized binaries.

7.5.3 Analysis of Results

In Section 7.2.4, we discussed challenging constructs for function detection. As
shown in Section 7.5.2, Nucleus achieves significantly more accurate results than
other approaches. To gain a better understanding of the errors which do occur in
Nucleus, and the tradeoffs compared to other approaches, we select and manually
analyze a random sample of 100 false positives and false negatives from our experi-
ments. The sample includes all compilers and platforms we tested, and covers both
our function start and function boundary detection experiments.

7.5.3.1 False Positives

As discussed in Section 7.3, Nucleus uses connected components analysis of the
ICFG to detect functions without assuming anything about their memory layout,
and without requiring any prologue/epilogue signatures. This has several benefits: it
allows Nucleus to be compiler-agnostic, detect non-contiguous functions, and find
unreachable or indirectly called functions which are missed by signature-based ap-
proaches. The tradeoff is that Nucleus requires switch analysis and address-taken
analysis to correctly handle intraprocedural indirect jumps.

All of the false positives we analyzed, for ELF as well as PE binaries, are caused
by inaccuracies in resolving intraprocedural indirect edges. For C binaries, this is
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gcc x86 gcc x64 clang x86 clang x64 VS x86 VS x64

IDA Pro 6.7 0.97/0.71 0.97/0.68 0.98/0.68 0.97/0.68 0.83/0.85 1.00/0.94
BAP/BW 0.9.9 0.60/0.60 0.63/0.53 0.34/0.34 0.68/0.41 0.40/0.32 0.61/0.40
Dyninst 9.1.0 0.89/0.60 0.91/0.51 0.98/0.75 0.85/0.57 — —
Nucleus 0.97/0.89 0.97/0.90 0.95/0.88 0.94/0.86 0.85/0.84 0.94/0.85

∆Nucleus +0.00/+0.18 +0.00/+0.22 −0.03/+0.13 −0.03/+0.18 +0.02/−0.01 −0.06/−0.09

(a) SPEC CPU2006 (all binaries, optimization levels O0–O3)

gcc x86 gcc x64 clang x86 clang x64

IDA Pro 6.7 0.93/0.83 0.92/0.81 0.93/0.83 0.92/0.82
BAP/BW 0.9.9 0.67/0.75 0.75/0.74 0.42/0.47 0.77/0.52
Dyninst 9.1.0 0.91/0.79 0.92/0.70 0.93/0.85 0.85/0.74
Nucleus 0.98/0.96 0.98/0.94 0.99/0.97 0.99/0.93

∆Nucleus +0.05/+0.13 +0.06/+0.13 +0.06/+0.12 +0.07/+0.11

(b) Servers (C only, tested at per-server default optimization ranging from O0–O2)

Table 7.2: Precision/recall for function boundary detection (average geometric mean). ∆Nucleus

shows the improvement in Nucleus over other approaches.

due to unresolved switch edges, which result in isolated case blocks. When Nucleus

finds an isolated basic block, it flags this block as a possible indirectly called func-
tion entry, thereby producing a false positive. In C++ binaries, false positives are
caused by both unresolved switch edges, and unresolved exception handling edges
(again leading to isolated exception handling blocks). These results show that more
sophisticated switch detection and exception handling detection, explored in related
work [83; 106; 167; 196], could reduce the false positive rate in Nucleus.

7.5.3.2 False negatives

False negatives in Nucleus, for both function start and function boundary detection,
are caused almost exclusively by tailcalls. In the random sample we analyzed, tail-
calls are responsible for 96% of false negatives. An example of a tailcall causing a
false negative is shown in Listing 7.2.

In a tailcall, a function (0x5daf10 in Listing 7.2) ends with a jmp to another
function (0x5dab70). This is an optimization frequently used by compilers—
instead of inserting a call instruction at the end of a function, the compiler instead
uses a jmp to remove the need for two subsequent ret instructions. Recall from
Section 7.3 that Nucleus starts by looking for functions that are directly called, and
then expands these by following control flow edges. Function 0x5dab70 is never
reached by a direct call, and is therefore not found in this first phase. However,
0x5daf10 is called directly. When expanding function 0x5daf10, Nucleus fol-
lows the tailcall edge to 0x5dab70, merging the two functions and producing a
false negative.

This produces false negatives only if the tailcalled function (the tailcallee) is
never called directly. If it is, then it is found in the first analysis phase, and the
problem does not occur. We have also seen cases where the tailcallee is called di-
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00000000005daf10 <rli_size_so_far>:

5daf10: 48 8b 47 08 mov rax,[rdi+0x08]

5daf14: 48 8b 77 18 mov rsi,[rdi+0x18]

5daf18: 48 89 c7 mov rdi,rax

5daf1b: e9 50 fc ff ff jmp 5dab70 <bit_from_pos>

Listing 7.2: False negative due to tailcall.

44a36b: mov edi,0x628882

44a370: mov esi,0x213

44a375: mov edx,0x62888e

44a37a: call 47ce90 <fancy_abort>

44a37f: nop

000000000044a380 <cfg_layout_initialize>:

44a380: push rax

44a381: mov edi,0x20

44a386: call 444970 <alloc_aux_for_blocks>

Listing 7.3: False negative due to fallthrough from non-returning call.

rectly (by another function than the tailcalling function), but the tailcaller is never
called directly. To prevent function merging in these cases, Nucleus does not expand
functions along inbound edges to directly called entry points (i.e., for directly called
basic blocks the connected components analysis is directed rather than undirected).

Tailcalls are the main cause of false negatives in both function start and function
boundary detection. For function boundary detection, a single tailcall can cause two

false negatives: (1) a wrong start address for the tailcallee, and (2) a wrong end
address for the tailcaller.

In some cases, merged functions are closely related, and the function performing
the tailcall is merely a stub that sets up a parameter and performs the tailcall. Nu-

cleus classifies such cases as multi-entry functions. Arguably, this could be consid-
ered correct. However, we count such cases as false negatives because the symbolic
information specifies the merged functions as separate.

In most cases, the tailcaller and tailcallee are in distinct memory ranges. As such,
extending Nucleus with the assumption that functions are contiguous in memory
could remove these false negatives on platforms where this assumption holds. In
this work, we chose not to add this assumption to Nucleus, as our aim is to show that
Nucleus achieves accurate function detection without such assumptions.

As Nucleus does not currently implement detection for non-returning functions,
it must assume that a call to such a function can return normally. This can
cause false negatives, if a call to a non-returning function directly precedes an-
other function that is itself never called. We show an example in Listing 7.3. Here,
there is a call instruction at address 0x44a37a that targets a non-returning func-
tion (fancy_abort). Directly after the call is the start of another function, at
0x44a380. Since this function is never called directly, it is merged into the preced-
ing function through the fallthrough edge from the call. This case is responsible
for 4% of false negatives in our analysis, and again occurs only if the function after
the non-returning call is itself never called.
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Figure 7.4: Runtime performance for function boundary detection. The x-axis (number of instruc-
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7.5.4 Runtime Performance

Figure 7.4 compares the runtime performance for Nucleus to other approaches. The
measured runtimes include not only the function detection phases, but also the dis-
assembly and (I)CFG analysis phases of all compared tools. Nucleus is among
the fastest of the compared approaches, providing runtime performance comparable
with Dyninst, and completing all of its analysis in under 20 seconds even for binaries
with code sections in the order of 1 × 106 instructions. Both Nucleus and Dyninst
scale roughly linearly. IDA Pro performs a more extensive analysis phase for each
binary, and therefore requires 45 seconds to process the largest binary. Note that
for BAP/ByteWeight, we were forced to exclude the largest binary (xalancbmk at
O3) from our tests due to scalability issues, which can be observed from the steep
increase in runtime for BAP/ByteWeight as binary size increases.

7.6 Analysis of Machine Learning in Function Detection

Several recent papers have investigated the use of machine learning techniques to
automatically learn signatures for function recognition. Bao et al. use a machine
learning system (ByteWeight) to construct a weighted prefix tree of known code
sequences that delineate functions [26], while Shin et al. train Neural Networks to
recognize functions [164]. Both of these papers report extremely accurate results.

Unfortunately, Shin et al. have not released an open-source version of their sys-
tem, preventing us from directly comparing it with Nucleus. ByteWeight is avail-
able open-source, and is used for function detection in recent BAP versions [44].
The results for our tests with this version of ByteWeight (which we refer to as
BAP/ByteWeight) are reported in Section 7.5.2. As described there, we were unable
to reproduce the performance reported by Bao et al. for this ByteWeight version.
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Start Boundary

p r F p r F

ByteWeight [26]§ 0.97 0.97 0.97 0.93 0.93 0.93
Neural Nets [164]§ 0.99 0.99 0.99 0.97 0.94 0.95
Nucleus† 0.96 0.94 0.95 0.96 0.88 0.92

Table 7.3: Precision/recall/F-scores for function start and boundary detection (average scores for

the test suite of Bao et al. [26]). † Nucleus results are for gcc, clang and Visual Studio. § Bao et

al. [26] and Shin et al. [164] results are for gcc, icc and Visual Studio.

For instance, our BAP/ByteWeight tests with gcc on x64 produced a mean F-score
for function start detection of only 0.65, which is 0.32 points lower than the result
presented in the original ByteWeight paper.

As mentioned in Section 7.5.2.1, we also requested the trained ByteWeight ver-
sion tested in the original paper by Bao et al., in order to run it on our own test
suite. Unfortunately, the authors were unable to provide us with this version of
ByteWeight, as they did not retain the trained ByteWeight version used for their
tests. We therefore provide an additional comparison of Nucleus against the results
as presented by Bao et al. and Shin et al. in their respective papers (Section 7.6.1).
Subsequently, we provide an in-depth analysis of the reasons for the diminished per-
formance we observed in BAP/ByteWeight (Section 7.6.2). This analysis reveals
inadvertent methodological errors in the evaluations of both Bao et al. and Shin et
al., which cause a strong bias in the test suite they used for evaluation. This bias
provides a likely explanation for the observed performance discrepancy.

7.6.1 Function Detection Performance

Table 7.3 compares the function detection results achieved in Nucleus to those pre-
sented by Bao et al. and Shin et al. Both machine learning papers use the same test
suite, which consists of coreutils, binutils and findutils, and a num-
ber of Windows applications (see Section 7.6.2). We repeated our experiments with
Nucleus for this same test suite, the only difference being that Nucleus is evaluated
on gcc, clang, and Visual Studio, while both Bao et al. and Shin et al. used a
compiler suite consisting of gcc, icc and Visual Studio.

The table shows that Nucleus achieves F-scores comparable to those presented
by Bao et al. and Shin et al. For function start detection, the precision, recall and
F-scores for the different approaches are within 0.05 points from each other. The
function boundary detection scores are also comparable—Nucleus achieves higher
precision than ByteWeight (fewer false positives), though with slightly lower recall
(more false negatives). The overall F-scores are within 0.03 points from each other.

Though Nucleus performs well on the test suite used by Bao et al. and Shin et
al., we opted to use our own test suite for our main evaluation. The reasons for this
choice are explained in Section 7.6.2, which provides an in-depth analysis of the
differences between our test suite and the tests done by Bao et al. and Shin et al.
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7.6.2 Evaluation Methodology

As mentioned in Section 7.6, we observed a large discrepancy in the results achieved
by ByteWeight on our own SPEC-based test suite compared to the results reported
in the original ByteWeight paper [26]. The mean F-score was 0.32 points lower than
expected, and this observation persisted across gcc, clang and Visual Studio. It
also persisted across different versions of gcc, ranging from version 4.7 (used in the
original ByteWeight evaluation) to version 5.1.1.

Upon closer inspection of the test suite used by Bao et al. to evaluate ByteWeight,
we found that it contains many binaries with large amounts of common functions. In
the remainder of this section, we show that this leads to a large bias in the results
reported by Bao et al., due to a significant overlap between training set and test set.
This is problematic, because ByteWeight is a machine learning approach, and thus
the validity of its evaluation relies on a strong separation between training and test
binaries. Moreover, the exact same problem occurs in the Neural Network-based
approach by Shin et al., as they used the same evaluation test suite as Bao et al. for
their own evaluation.

7.6.2.1 Test Suite for ELF Binaries

Bao et al. build their ELF test suite (for gcc and icc) from three popular open-
source binary suites: coreutils, binutils and findutils. These contain
106, 16 and 7 binaries, respectively. Though all of these binary suites contain large
amounts of shared code, we focus here on coreutils, as it comprises the majority
of the Linux test suite. We perform our analysis on the binaries as compiled and used
by Bao et al., which they make available online.4 We focus our discussion here on
the binaries compiled at optimization level O0, but we verified that the same effects
occur at all optimization levels up to O3.

The coreutils binaries, as compiled by Bao et al. with gcc at O0, contain
1839 unique functions, distributed over 106 binaries (excluding PLT stubs and com-
monly named functions like main). There are 102 functions which occur in at least
90% of these binaries—mostly utility functions such as xmalloc and quotearg.
We took a random subset of 50 such functions, comparing 2 randomly selected bi-
naries for each function. In each case, the function body was shared verbatim be-
tween binaries, the only difference being in code addresses (which are normalized
by ByteWeight).

Moreover, 87 functions occur in all binaries.5 Since the average coreutils
binary has 160 functions, this means that for the average binary, if selected for the
test set, 54% of its functions are guaranteed to occur in the training set. The three
binaries with the most functions are mv, ginstall and vdir (388, 358 and 355
functions, respectively). Thus, even these binaries share nearly 25% of their func-
tions with all other coreutils binaries. The largest degree of overlap is found in

4http://security.ece.cmu.edu/byteweight/
5Except make-prime-list, which shares less code than other coreutils binaries

http://security.ece.cmu.edu/byteweight/
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true and false; 94% of their functions are guaranteed to occur in the training set.
In contrast, the average binary in our own SPEC-based test suite contains less than
1% of such shared functions (the only cases being bootstrap functions like _start).

The average coreutils binary shares 94% of its functions with at least one
other binary in the test suite. This is because many coreutils binaries are ex-
tremely simple, often having only a main and usage function in addition to the
shared utility functions.

Both Bao et al. and Shin et al. use 10-fold cross validation in their evaluations.
This means that the set of binaries B is divided into two sets BE and BT , such that
BE ∪ BT = B. BT consists of 90% of the binaries, and is used for training the
system. The trained system is then evaluated on BE , which contains the remaining
10% of binaries. This is done 10 times, each binary occurring in BE exactly once.

To determine the precise probability of overlap between binaries in BE and BT ,
let bf and cf be two binaries that share function f . bf has an 11/106 chance of being
chosen for BE . Supposing that bf ∈ BE , cf will be in BT with probability 95/105 ≈

0.91. Given that the average coreutils binary shares 94% of its functions with at
least one other binary, for the average binary in BE at least a fraction 0.94× 0.91 ≈

0.86 (86%) of its functions are expected to occur in BT .

7.6.2.2 Test Suite for PE Binaries

A similar situation occurs in the PE test suite used by both Bao et al. and Shin et
al. for testing Visual Studio. We simply report the number of related binaries in the
PE suite, rather than repeating the argument made for the ELF tests.

The PE test suite contains a total of 17 applications, from 7 open-source projects:
putty, 7zip, vim, libsodium, libetpan, HID API, and pbc. Out of these,
7 applications belong to the putty project: pageant, plink, pscp, psftp,
putty, puttygen and puttytel. All of these share a common code base. Re-
lated applications are also found for the 7zip project (3 related), vim (2 related)
and libetpan (2 related). Overall, only 3 of the applications in the PE test suite
do not have a relative that also occurs in the test suite.

In summary, it is clear that both the ELF and PE test suites used by Bao et
al. and Shin et al. cause a strong bias in their evaluation results, preventing us from
directly comparing these results to Nucleus. We believe this bias is the most likely
explanation for the drop in accuracy when testing ByteWeight on our own test suite.
Given this bias, the results presented by Bao et al. and Shin et al. cannot currently be
assumed to generalize. Thus, further research in this area is needed to reassess the
viability of machine learning for function detection.

7.7 Discussion

Chapter 6 has shown that in existing approaches, function detection is among the
most compiler-specific and error-prone stages of the binary analysis process. To



150 CHAPTER 7. COMPILER-AGNOSTIC FUNCTION DETECTION IN BINARIES

the best of our knowledge, Nucleus is the first approach which shows that accurate
function detection can be achieved in a completely compiler-agnostic way, with sig-
nificantly fewer false positives and false negatives than existing work. This enables
function detection for binaries compiled with new or unknown compilers, and elim-
inates the need for maintaining signature databases.

We show in Section 7.6 that existing work, which aims to reduce maintenance
costs through machine learning [26; 164], suffers from a significant evaluation bias
due to overlapping training and test sets. In principle, it should be possible for these
approaches to match the accuracy of other signature-based approaches, such as IDA
Pro. Unfortunately, the question of whether or not they can exceed this accuracy
remains to be answered in future work. While machine learning approaches do suc-
ceed in reducing manual maintenance, Nucleus eliminates maintenance completely,
while achieving higher accuracy than any of the other approaches we tested.

To demonstrate the generality of Nucleus, in this work we have limited our as-
sumptions on function structure to a minimum. We assume only that intraprocedural
control transfers follow a different general pattern than interprocedural control flow.
In contrast, existing work, including machine learning approaches, inherently relies
on compiler-specific function prologue and epilogue patterns [26; 83; 164], which
are not always present at high optimization levels.

Section 7.5.3 shows that most false negatives in Nucleus (resulting from tailcalls)
can be eliminated if it can be assumed that functions are laid out contiguously in
memory. Although we opted not to make this assumption, the open source version
of Nucleus contains a command-line option to enable this assumption when it is
known that functions are contiguous. We stress that this feature is strictly optional;
it is not required by Nucleus, and is disabled in all tests in this chapter.

Since the vast majority of false positives result from unresolved indirect intrapro-
cedural flows (Section 7.5.3), Nucleus benefits from advances made in switch detec-
tion and reverse engineering of exception handling constructs [83; 106; 167; 196].

Though Nucleus does not explicitly target malware or obfuscated binaries, its
lack of assumptions on low-level code structure enable Nucleus to handle some com-
mon types of obfuscations more accurately than signature-based work. For instance,
Nucleus is agnostic to instruction-level polymorphism, and to obfuscators that inten-
tionally rewrite function prologues and epilogues to non-standard variants [154]. Ad-
ditionally, Nucleus provides inherent support for finding indirectly called functions,
making it immune to obfuscations that obscure function calls by using branching
functions, or transforming direct calls to indirect calls [110; 118]. We chose not to
evaluate these aspects of Nucleus, due to the large variety of obfuscation techniques
used in practice and the lack of ground truth for malware samples. Instead, we defer
proper handling of obfuscated malware to related work on deobfuscation, which can
be used in unison with Nucleus [110; 154].

For compilers which emit highly predictable function patterns, our results show
that traditional signature-based approaches perform extremely well (Section 7.5.2.1).
In our tests, this was only the case for Visual Studio on x64, where IDA Pro took full
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advantage of the predictability in calling convention. However, as our results also
show, the majority of compilers use a variety of calling conventions and function
patterns, causing a decline in the accuracy of signature-based approaches. In all
these cases, Nucleus provides significantly higher accuracy.

7.8 Related Work

Previous work has used machine learning to automatically generate signatures, elim-
inating the need for manual maintenance [26; 164]. However, these approaches still
require an expensive learning phase for every new compiler version, and cannot han-
dle unknown compilers. In contrast, Nucleus is a completely compiler-agnostic and
zero-maintenance approach.

Signature-based function detection is used in all major disassemblers [31; 44; 83;
106; 165]. Several papers have found that function detection is significantly more
inaccurate than other primitives such as instruction or CFG recovery [22; 125]. At
the same time, function detection is widely used in binary analysis, ranging from
binary-level Control Flow Integrity [23; 126; 144; 196; 197; 199] to automatic vul-
nerability detection [86; 140], binary instrumentation [31; 114], and manual binary
analysis [160; 191]. Thus, our results for Nucleus facilitate work in a large range of
binary analysis applications.

Our approach to disassembly is based on linear disassembly with error correction.
Similar approaches have been explored in the context of high-coverage Control Flow
Integrity [199], deobfuscation [110], and binary instrumentation [114; 198]. In all
these cases, linear disassembly results have proven extremely accurate, a finding
confirmed in recent work on disassembly accuracy [22].

7.9 Conclusion

This chapter has shown that compiler-agnostic function detection can achieve high
accuracy. We have shown that Nucleus, our function detection approach, provides
significantly more accurate results than existing approaches in terms of both func-
tion start and function boundary detection, without making any compiler-specific
assumptions. Nucleus provides inherent handling of complex cases such as non-
contiguous and multi-entry functions, and functions with unknown prologues or epi-
logues, which are not handled in current signature-based work. Moreover, we have
found a significant bias in the evaluations of existing approaches that aim to reduce
maintenance costs for function signature databases through machine learning, show-
ing the need for future work to reassess the viability of these approaches. In addition
to achieving more accurate results than existing work, Nucleus is zero-maintenance,
supporting new or unknown compilers without any additional effort. We provide
Nucleus open-source, including the option to transfer results to IDA Pro, making it
straightforward to use Nucleus in real-world environments.





Discussion

Chapter 6 shows that many of the complex constructs introduced in Chapter 2 are
far less prevalent in modern compiler-generated binaries than previously thought [31;
125; 135]. For instance, modern ELF binaries contain no inline data, and even on
Visual Studio binaries which do contain a degree of inline data, the impact on disas-
sembly accuracy is limited. In practice, for most primitives, the tested disassemblers
achieve sufficient precision to allow them to serve as a basis for binary-level security
work. Combined with the mechanisms discussed in Part I of this thesis for dealing
with disassembly errors, strong safety guarantees can be provided, with only limited
performance and analysis overhead.

Ironically, potential errors in function detection are discussed less in the literature
than problems for any other kind of primitive (Chapter 6.5), even though function
detection is the least reliable primitive of all. At the same time, Chapter 6.4 shows
that the lack of precision in function detection has strong implications in many pop-
ular areas of binary-based security research, including Control-Flow Integrity. This
clearly demonstrates the need for improved function detection, as we pursue in our
work in Chapter 7.

As discussed in Chapter 7, our novel function detection approach retrieves a sig-
nificantly larger fraction of the functions (more true positives) than any of the other
tested disassemblers, including IDA Pro. Moreover, it achieves this without increas-
ing (indeed, often even reducing) the false positive rate. These results directly trans-
late to improved security guarantees and efficiency in virtually all of the discussed
areas of binary analysis-based research.

In summary, our results provide a more stable foundation for future binary-level
security research, both by improving the precision of the previously least reliable
primitives, and by reducing the gap between true disassembler performance and the
expectations of reviewers and researchers in the field.
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Chapter 8

Conclusions

Our goals in this thesis have been twofold. (1) Building methods for using poten-
tially inaccurate disassembly to safely build secure systems, and (2) Quantifying and
improving the precision of the disassembly primitives underlying binary-based sys-
tems, to provide a better understanding of disassembly guarantees for both reviewers
and researchers. In Chapter 1, we formulated four research questions around these
key goals. We now recapitulate the conclusions we have reached regarding each of
these research questions. We also provide a discussion of the limitations of our work,
and possibilities for future research.

8.1 Results

Here, we briefly recall each of the research questions we asked in Chapter 1, summa-
rizing our main conclusions. Our main conclusions regarding each of the research
questions are as follows.

Question (1): Given all the potential disassembly inaccuracies, how can we effec-

tively and safely apply binary analysis to build systems for analyzing and securing

legacy and proprietary binaries?

In Part I (Chapters 3–5) of this thesis, we arrived at several strategies for achiev-
ing crash-safety and low overhead in binary-based security solutions. Specifically, it
is possible to apply binary analysis in such a way that the analysis result is either an
overapproximation, or an underapproximation of the ideal result. Thus, even when
we cannot guarantee that the result is fully correct, we can still guarantee the ab-
sence of false negatives or false positives, respectively. We have shown that these
relatively weak guarantees are sufficient to build safe and efficient binary analyses.
In addition, we have considered the use of other techniques for minimizing instru-
mentation errors, fixing errors at runtime, and using policy-driven checks to flexibly
utilize source-level information (only) when available.
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To minimize the overhead induced by binary analysis and instrumentation, we
have considered the use of runtime analysis, limited to executed paths (as opposed to
the exponentially large number of paths to be considered statically). Moreover, we
have considered techniques for reducing the necessary instrumentation code (and
thus overhead) to a minimum.

Question (2): How precise is disassembly (in the broadest sense) in practice, and

how frequently should we expect inaccuracies of each possible kind?

This question is addressed in Chapter 6. We have shown that several complex
constructs are far less prevalent than previously thought, and that disassembly results
in practice are quite accurate for the best performing disassemblers. The exception
to this is function detection, for which we have shown that significant amounts of
both false positives and false negatives are to be expected.

Question (3): To what extent is there a consensus on disassembly precision in the

binary analysis community, and where is that consensus mismatched with our find-

ings from Question (2)?

Like Question (2), this question is addressed in Chapter 6. We have reviewed
binary analysis papers published in six major conferences over the course of three
years, revealing a strong focus on complex corner cases which are unlikely to occur
in practice. At the same time, truly problematic cases like function detection are
hardly considered at all. Thus, we have shown (and hopefully alleviated) a consid-
erable mismatch between expectations in the binary analysis community, and the
actual performance of modern disassemblers.

Question (4): How can we achieve more precise function detection results?

Finally, this question is addressed in Chapter 7, where we designed and imple-
mented a novel function detection algorithm which yields considerably better results
than existing approaches. The key insight here is to focus on Control Flow Graph-
based analysis, rather than relying on compiler-specific instruction-level signatures
for detecting functions. By conducting our analysis at the CFG level and using con-
nected component analysis, we are better able to locate functions without standard
prologues, as well as indirectly called functions not found by traditional methods.

8.2 Limitations and Future Work

In Chapter 7, we implemented an improved function detection approach that achieves
significantly more accurate results than existing approaches. Given these results, we
can now achieve reasonably accurate performance for all disassembly primitives dis-
cussed in Chapter 2. In accordance with our focus in this thesis, these are all code
primitives. In contrast, the precision of data structure reverse engineering still lags
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far behind code reverse engineering [168]. Thus, while some research on reversing
data structures has been undertaken in the past [116; 168], this remains a promising
direction for future research. Improved results in this area would have an important
impact on both manual reverse engineering and automated security solutions; for
instance, StackArmor (Chapter 3) would benefit greatly from improved analysis of
stack objects.

A remaining area in code reverse engineering which may benefit from future
research is the matching of indirect call sites to address-taken functions. While our
work in Chapter 7 has improved the detection of address-taken functions themselves,
it has not addressed the problem of accurately analyzing which (indirect) call sites
may call these functions. More accurate results in this area would be extremely
useful to, for instance, Control-Flow Integrity solutions like PathArmor (Chapter 4),
which rely on such information to determine CFI policies. Recent work has im-
proved binary-level call site/function matching by using (conservative) information
on function arguments [181]. However, further contributions are worth the effort, as
they translate directly to (for instance) improved CFI solutions.

Finally, it is important to reiterate that our work has focused on x86/x64 disas-
sembly. Some of our conclusions may not necessarily hold for other platforms. In
particular, complex constructs such as inline data may be significantly more preva-
lent in embedded platforms, or in firmware, than we have found to be the case for
the platforms evaluated in Chapter 6. An interesting direction for future research
may thus be to conduct a study similar to Chapter 6 for embedded platforms, or even
obfuscated code.
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Contributions to Papers

Some of the chapters included in this thesis are based on papers which are the result
of collaborative work. The below details my involvement in each of these works.

Chapter 3: StackArmor: Comprehensive Protection from Stack-Based Memory Er-

ror Vulnerabilities for Binaries StackArmor is joint work with Xi Chen, who is the
first author and main developer of the final version. My contribution consists of
implementing a full early version of our approach using PEBIL [114], upon which
the final version is also based. In addition, I implemented several optimizations for
PEBIL and a custom static code injection tool (elfinject) used in StackArmor

to inject instrumentation code. I also drafted the first version of our paper.

Chapter 4: Practical Context-Sensitive Control-Flow Integrity I share the first au-
thorship on PathArmor with Victor van der Veen. As described in Chapter 4, PathAr-

mor consists of two main components: (1) A kernel module which handles LBR
management and hooks the necessary system calls and functions, and (2) A verifi-
cation module, which verifies the validity of LBR paths based on the Control-Flow
Graph. Victor is the main author of the kernel module, while I am the main author
of the verification module. We contributed equally to the evaluation and paper.

Chapter 5: Parallax: Implicit Binary Code Integrity Verification Using Return-Ori-

ented Programming I performed all work in designing and implementing the Par-

allax system, as well as writing the paper describing it.

Chapter 6: An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries

I performed the majority of the work in designing and executing our experiments,
and all work in writing the paper. Xi Chen ran the Windows-based experiments,
while Victor van der Veen assisted with reading and categorizing papers for our
literature review.

Chapter 7: Compiler-Agnostic Function Detection in Binaries I performed all
work in designing and implementing the Nucleus system, as well as writing the
paper describing it.
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Summary

Disassembly is the process of identifying code in binary programs, and translating
it into a form fit for human analysis or further processing. It is a crucial step in
virtually all forms of binary analysis, including malware analysis and security tech-
niques for binaries. The need for securing legacy and proprietary binaries becomes
ever more pressing as attackers develop new exploitation techniques which threaten
unhardened binaries. Often, recompilation is not an option, as source code (or even
symbols) may not be available; this leaves us with no choice but to use binary-level
techniques. Unfortunately, disassembly is an undecidable problem, meaning that
any system that operates on non-trivial binaries is bound to run into incomplete or
erroneous disassembly.

This thesis explores methods for safely implementing binary-level hardening
techniques using imperfect disassembly as a basis. We develop novel defenses
against several forms of advanced attacks, including stack-based attacks, control-
flow hijacking attacks, and tampering attacks on a hostile host. These defenses im-
plement several strategies which allow us to make a balanced tradeoff between the
level of security, overhead, and crash-safety in protected binaries.

Moreover, we perform an in-depth analysis of the disassembly process itself on
the x86/x86-64 platform, highlighting the most error-prone cases and uncovering dis-
crepancies between disassembly accuracy in practice, and widespread expectations
on disassembly accuracy in the literature. In doing so, we provide a more stable
foundation for future disassembly-based research, clarifying where problems are
most likely to occur and special measures for ensuring correctness are thus the most
necessary. Based on our analysis, we also implement improved methods for function
detection; the most error-prone disassembly primitive at the time of writing.
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Samenvatting

Disassembly is het identificeren van machinecode in binaire programma’s, en het
vertalen hiervan in een vorm die geschikt is voor analyse door mensen, of verdere
verwerking door een computer. Het is een cruciale stap in vrijwel alle vormen
van binaire analyse, waaronder malware-analyse en beveiligingstechnieken voor bi-
naire programma’s. Het belang van beveiliging voor bestaande binaire programma’s
groeit naarmate nieuwe exploitatietechnieken voor onbeschermde programma’s wor-
den ontwikkeld. Het is vaak geen optie om een programma opnieuw te compileren,
omdat de broncode (of zelfs symbolische informatie) in veel gevallen niet meer be-
schikbaar is; in zulke gevallen is er dus geen andere keus dan het direct toepassen van
binaire beveiligingstechnieken. Helaas is disassembly een onbeslisbaar probleem,
waardoor ieder systeem dat niet-triviale binaire programma’s verwerkt met zeker-
heid te maken krijgt met incomplete of foutieve disassembly.

In dit proefschrift onderzoeken we methodes voor het veilig implementeren van
binaire beveiligingstechnieken met imperfecte disassembly als basis. We ontwikke-
len nieuwe verdedigingsmechanismes tegen meerdere geavanceerde aanvallen, waar-
onder aanvallen op de stack, zogenaamde “control-flow hijacking” aanvallen, en
aanvallen waarbij de integriteit van het programma zelf bedreigd wordt. Onze verde-
digingsmechanismes implementeren een aantal strategieën die het mogelijk maken
een gebalanceerde afweging te maken tussen het gewenste beveiligingsniveau, de
resulterende vertraging van het programma, en de mate van waarschijnlijkheid van
crashes door disassemblyfouten.

Daarnaast bevat dit proefschrift een gedetailleerd onderzoek naar het disassem-
blyproces zelf op het x86/x86-64-platform, waarbij aandacht wordt besteed aan de
meest foutgevoelige gevallen, en waarbij we afwijkingen constateren tussen de be-
trouwbaarheid van disassembly in de praktijk, en de verwachtingen betreffende deze
betrouwbaarheid in de wetenschappelijke literatuur. Hiermee ontwikkelen we een
stabielere basis voor toekomstig onderzoek, door te verduidelijken welke problemen
het meest waarschijnlijk zijn, en dus speciale aandacht behoeven. Gebaseerd op
onze analyse implementeren we ook een verbeterde methode voor functiedetectie,
hetgeen op het moment van schrijven de meest onbetrouwbare component van het
disassemblyproces is.
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